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QMC rules

@ Quasi-Monte Carlo rules are equal weight integration
formulas used to approximate high-dimensional integrals

@ can roughly be divided into lattice rules and digital nets

@ we focus on digital nets, in particular polynomial lattice
rules, which are constructed using polynomials over finite
fields
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The need for randomization

@ approximating integrals, we need information on
integration errors

@ in some cases, estimates are conservative or unknown

@ randomization solves this problem, it allows to obtain
statistical information on integration errors

@ we study scrambling, a particular randomization method
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Introducing the gain coefficients

@ we are interested in the variance of estimators of the form

b™—1

f)—bmzfyh ~ [

f(x)dx = E [I(f)]
0.1

where {y,}2"," is obtained by applying the scrambling

algorithm to a ponnomiaI lattice rule
@ we have

o~

Var(in) = 3 Tief(f).

IeNS\ {0}

for any estimator obtained by scrambling a point set
{xp}2"5" such that x;, € [0,1)3
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A smoothness assumption

@ we introduce a norm of the form

[flla = sup bl oy (f)
IeNg
@ hence 1
N 2 —2all
Var(/(f)) < [Iflla 5 > el
IeNg\{0}
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A quality criterion

@ employ the quality criterion

1
N Z rlb—za“h
IENg\ {0}

e for digital (t, m, s)-nets, a small t value yields small gain
coefficients,
rp=0for|ljy <m-—t

@ we minimize the sum for all f for which ||f||, < oo over the
class of polynomial lattice rules
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Weighted function spaces

@ we introduce weights -, in which case digital (t, m, s)-nets
with small t-value do not necessarily yield the smallest
possible gain coefficients

@ component-by-component constructions have proven
useful

@ we show they achieve almost optimal convergence rates in
the function space under consideration
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Outline of this presentation

@ Preliminaries
@ Polynomial lattice rules
@ Scrambling
@ Weighted function spaces based on variance

@ Estimators based on scrambled polynomial lattice rules
e Component-by-component construction

e A lower bound

Jan Baldeaux and Josef Dick Polynomial Lattice Rules with Small Gain Coefficients



Preliminaries
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

Outline

@ Preliminaries

ial Lattice Rules witl



Preliminaries . .
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

Introducing polynomial lattice rules |

@ fix a prime b, denote by Z, the finite field containing b
elements and by Z,((x~")) the field of formal Laurent

series
o0
L= tx,
I=w

where w is an arbitrary integer and all t; € Z,,
@ introduce a map from Z((x~1)) to [0, 1)

00 m
Vm (Z t,x’) = Z b~
I=w I=max(1,w)
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Preliminaries . .
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

Introducing polynomial lattice rules Il

Definition
Choose p(x) € Zp[x] with deg(p(x)) = m, q1(x), ..., gs(x)
€ Zp[x]. For0 < h< b™leth=hy+ hb+...+ hy_1b™ ' and
let

. m—1

h(x) =" hx" € Zp[x].

r=0

Then Sp m(q), where @ = (g1, . ., gs), is the point set

h(x)a1(x) h(x)gs(x)
Xp=|(Vvn| —"—=),...,Vn| —>"2]] €]0,1)%,
" ( " ( p(x) "\ )) <Y
for 0 < h < b™. A quasi-Monte Carlo rule using the point set
Sp,m(q) is called a polynomial lattice rule.
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Preliminaries

Polynomial lattice rules
Scrambling
Weighted function spaces based on variance

Dual lattice

@ for a non-negative integer k with b-adic expansion
k=k +Kkb+...

trm(K)(X) = ko + ks X + ... + K1 X" € Zp[x]

Definition

Let b be prime and q(x) = (g1(x), ..., gs(x)) € Z}[x], then the
dual polynomial lattice of Sp m(q) is given by

D = Dp(q) = {k € N3 : trm(K1)(X)G1 (X) + trm(K2) (X)qa(X)+
o+ trm(ks)(X)Gs(x) = O (mod p(x))} -
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Preliminaries
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

Introducing scrambling |

@ given x € [0,1)%, where x = (xq,...,Xs) and
_ &1, G
b T

@ then the scrambled point shall be denoted by y € [0, 1)%,
where y = (y4,...,Ys) and

X; +....

_ 7jA 7j,2
i=p st

@ the permutation appliedto §;;,j=1,...,s depends on ¢ x
for1 < k </, we have

nig =7i(&1), mj2 = mig(&2) M3 = Tigg2(83)
Mk = Tj&j 1yl k-1 (gj,k)7 k>2.
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Preliminaries
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Scrambling
Weighted function spaces based on variance

Introducing scrambling |l

@ apply scrambling to a point x to obtain y, y is uniformly
distributed in [0, 1)®

@ scrambling preservers the (t, m, s)-net property with
probability 1
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Preliminaries
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

An expression for the variance

@ we study the estimator

N—

—_

- 1Ny

h=0

where {yh} lis obtalned by applying the scrambling
algorithm to {xh}h 0, X €[0,1)3,

Var(I(f)) = > Tof(f

IeNs\ {0}
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Preliminaries
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

The gain coefficients

@ the oy(f) only depend on f and can be expressed in terms
of Walsh or Haar coefficients

@ we define a weighted norm for functions f € L,([0, 1]°) by

fllo, = max~y /2 sup bllis f).
Il max IueNﬁ)“‘ (1.0)(F)
@ for0 < a <1, Vos~ C L([0,1]°) consists of all functions f

for which ||f||o < oo
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Preliminaries
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

What functions lie in this space? |

e for a subinterval J = []7_4[x;, y;) with 0 < x; < y; < 1 and
f:]0,1)°* — R, let A(j, J) denote the alternating sum of f at
the vertices of J, adjacent vertices having opposite signs

@ the generalized variation in the sense of Vitali of order

O<a<tis

where the supremum is extended over all partitions P of
[0,1]°

A(f,))
Vol(J)«

V(S)(f) = sup (Z Vol(J)
P \vep
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Preliminaries
Polynomial lattice rules

Scrambling
Weighted function spaces based on variance

What functions lie in this space? Il

@ for o = 1, and f having continuous partial derivatives,

2 1/2
Ve () = ( / dx) .
[o,1]¢

@ taking into account projections onto lower-dimensional
faces, we obtain the generalized Vitali variation with
coefficient «

o°f

1/2

vl = | 3 (Vi)

uC[s]
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Preliminaries

Polynomial lattice rules
Scrambling
Weighted function spaces based on variance

What functions lie in this space? Il

Let b > 2 be a natural number and let f € L([0, 1]°) have
bounded variation V,,(f) < oo of order0 < a < 1. Then

fllo < fllo~et Va(f —1/2(p _ 4 (a—1/2)+|u|>.
1l < max (g Va(f) max 26— 1)
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Estimators based on scrambled polynomial lattice rules

Outline

@ Estimators based on scrambled polynomial lattice rules
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Estimators based on scrambled polynomial lattice rules

The estimators

@ we discuss the variance of the estimator

bM—1

W) = o > 1),
h=0

where {y,,}2151 are obtained by applying the scrambling

algorithm to the polynomial lattice rule {x,}
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Estimators based on scrambled polynomial lattice rules

Worst-case variance |

@ we are interested in the worst-case variance of multivariate
integration in V,, s, using a scrambled quasi-Monte Carlo
rule Qpm g:

Var (Qbm,s, Vms,,y) = sup Var [7(f, Qbm,s)} ,

feVa,sllflla<1

o~

where /(f, Qpm ) denotes the estimator obtained by
scrambling Qpm s
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Estimators based on scrambled polynomial lattice rules

Worst-case variance |l

@ the quasi-Monte Carlo rule associated with Sp m(q) is
denoted by Qpn (q):

Var (Qbmys(q), Vms,ﬂ,) = sup Var P(f, Qbm,s)} ,

fe Va5, lflla<1
o fork = H0+Ii1b+...+/€a_1ba71 € N let
1 if k = 0,
lany(K) = { ’VW if k >0,

and for kK = (ki, ..., ks) € N§ let ro (k) = TT7_q fa(K))

Jan Baldeaux and Josef Dick Polynomial Lattice Rules with Small Gain Coefficients



Estimators based on scrambled polynomial lattice rules

A bound on the worst-case variance

Corollary

Let0 < a <1, q € Zp[x]° be a generating vector for a classical
polynomial lattice point set with modulus p, and

Var(Qpm 5(q), Va,s,) the worst-case variance associated with
Qpm(q). Then

Var(Qbm,s(Q)a Va,s;y) < Z r20¢+1,‘y(k)7
keDp(q)

;/vhere Dy(q) = Dp(q) \ {0} and Dp(q) is the dual polynomial
attice.
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Estimators based on scrambled polynomial lattice rules

A quality criterion

@ the bound is denoted by

B(q,0,7) = > roas14(K) (1)
keDy(q)

The following equality holds:

B(q,0.7) = 4 b%f ﬁ < (Xh,jaa)> -1,

h=0 j=1
b—1— bZaLIogbxj(b2a+1 _ 1)
¢(X,O¢)— b(bza_-l) .
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Estimators based on scrambled polynomial lattice rules

Self-adjustment property

@ assume Sp m(q) is a polynomial lattice rule so that
B(q,,7) < CsayN~(1T20H0

@ then from Jensen’s inequality

1420/ +2c

B(q, o, v) 2> > B(q, o/, 71+2a),

fora <o <1.
@ Hence

1420/ / 1420/
1+2 Ioh 1+2a')+6
B(q, 0/7,71+2 alpha) Cs aP aN ( 013 apha

so the polynomial lattice rule constructed to achieve
optimal convergence rates for functions of smoothness «,
adjusts itself to the optimal rate.
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Component-by-component construction

Outline

e Component-by-component construction
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Component-by-component construction

The CBC algorithm

Rom :={q € Zp[x] : deg(q) < mand q # 0} .

Algorithm 1 CBC algorithm
Require: b aprime, s, m € N and weights v = (;);>1-
1: Choose an irreducible polynomial p € Z[x] with deg(p) =
m.
. Set g =1.
: ford =2to sdo
find qu € Rpm by minimizing B((g1,...,q9q),a,7) as a
function of q4.
: end for

return g = (qi,...,Qs).

A w N

(23

Jan Baldeaux and Josef Dick Polynomial Lattice Rules with Small Gain Coefficients



Component-by-component construction

The convergence rate of the CBC algorithm

Theorem

Let b be prime and suppose that q* is constructed using the
CBC algorithm. Then

B(q%, a,) < Csany N~ 10 < 5 < 2a.
1
[y ~yj2"+1“5 < oo, then

B(q%, @, ) < CooarysN~EFDH 10 < 5 <20,
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A lower bound

Outline

e A lower bound
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A lower bound

Introducing a class of approximations |

@ establish a lower bound for a large class of algorithms,
following [Novak ’88]

@ consider approximating

amapping /: V,s4 — R using / - Vasy —+ R
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A lower bound

Introducing a class of approximations |l

@ we consider approximations of the form
= pol

where
@ L:V,s~ — RN represents information

@ ¢ : RN - Ris the algorithm showing how to use the
information
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A lower bound

Defining a class of approximations

@ recall that our approximations have the form 1 = ¢ o L
@ define the following information operator

,ad _

{L: Vasy = RVIL(f) = (f(ay),..., f(an(f(a1), ..., f(an-1)))),
where a1 € [0,1]%and @, : R'~! — [0,1] fori = 2,.. .,S}

@ introduce the class of approximations

A =TV, o s R[I=polwithy: RV 5 Rand L € 29
77’7 N
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A lower bound

Randomized algorithms

@ recall the class of approximations
AR — {S Viasy = RIS =¢oMwith¢: RV - Rand M e I,"i’,d}

® Q= (Q(w))weq is a randomized algorithm in A3 if
(Q, B, 1) is a probability space and Q(w) € A3 for all w € Q
@ the set of all randomized algorithms is denoted by C(A29)
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A lower bound

A lower bound

We have the following lower bound

inf _ sup Var(Q(f)) > CN~(a+1)
QeC(AZY) eV 5.
Ifla<1

for some constant C independent of N, where

var(@() = [ | - [ a)(ndute )] ().
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A lower bound

Related works

@ same convergence rates established for functions in V,, s -,
0 <« < 1, using scrambled digital nets, see the book by
Dick and Pillichshammer

@ optimal root mean square error convergence rates for
a > 2, for functions of higher order variation, recently
obtained by Dick
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