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Introduction

Introduction

Financial assets evolution modelled as an SDE.

@ Option's price is a functional of the underlying asset’s price.

o Greeks: sensitivities of option’s price to market parameters.

o Underlying asset’s price Sp, volatility o, interest rate r...
e Measure exposure to different sources of risk.

Estimation of option’s price and Greeks with Monte Carlo.
Computing Greeks is more challenging than pricing derivatives.
Problems arise with discontinuous/nonsmooth payoffs.

Multilevel path simulation to reduce computational
complexity.
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Introduction

@ Monte Carlo Greeks
@ Setting and finite differences
@ Pathwise Sensitivities
@ Likelihood Ratio Method

© Multilevel Monte Carlo
@ Multilevel path simulation idea
o MLMC Complexity

© Multilevel Computation of Greeks

Applying the Multilevel idea to the computation of Greeks
Multilevel Pathwise Sensitivities

Multilevel Pathwise Sensitivities with Cond. Expectations
Multilevel Split Pathwise Sensitivities

Multilevel Vibrato Monte Carlo
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Setting

Notation:
@ Underlying asset S, value S; at time t
e Time interval [0, T] split in N timesteps of size h.
@ Interest rate r, volatility o.
e European option: payoff P(St).
Evolution SDE for S:
e dS(t) = a(S, t)dt + b(S, t)dW;
e Euler discretization: Spy1 = Sy + a(Sp, tn) h+ b(Sp, tn) AW,,.

@ Milstein discretization: S,41 =
Sn+a(Sn, ta) h+ b(Sn, tn) AW, + 5b(Sp, tn) 52 - (AWZ — h).
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A naive method: finite differences

Pricing:
@ The option's value for a certain parameter 0 is
V(9) = E(P(ST)).
@ Simulate paths for the underlying asset, get values of /5(57_)
e Compute MC estimate: V/(6).
Finite differences:
o Take parameter 6 + 06, compute \7(9 + 00)
o OV ~ V(6+60)-V(6)
o6 00
Limitations:
@ Requires two sets of calculations.
e Which 66 7

@ Discretisation bias/Variance tradeoff.
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Pathwise Sensitivities

Principle:
ov _ OE(P(S7)) _ m (9P(ST) _ | (2P as
o Gy =GR — g (7F1) =E (5 (57)- %F)
° % is a property of the payoff function.

0Sy
o S is known.

® Spy1=Sn+ a(Sn, tn) h+ b(Sn, tn) AW,
ISpt1 _ OS, + 8a(5,,,tn) h+ ab(S,,,tn) AW

= o0 — 09
Limitations:
° g—g must be defined almost everywhere.
@ For the first line to be true, W, must be uniformly
integrable.

@ Practically, P Lipschitz is a sufficient condition.
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Likelihood Ratio Method

Principle:
o Let p(S) the p.d.f. of St.
o
V=E(P(5r) = [ P(S)p
/P 9Pis = /Palng ds = E( a'og”>
00
Limitations:

@ In most cases, p(S) is not known.
@ Have to discretize [0, T] in time steps of size h.

@ LRM not well suited for path simulations,

1
V then explodes as +.
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Complexity Evaluation

We want a Monte Carlo option price with an accuracy e.
@ 2 sources of error: discretisation (N steps), finite number of
samples (M).
Mean Square Error: (1/M)V(P) + (E(P) — E(P))>2.
o 1st term \, with the number of paths M: O(;).
e 2nd term \, with the number of steps N: O(5).
We want to have these terms O(¢?).
o Weset M =0O(¢?)and N = O(¢71).
Total complexity O(N M) = O(e~3) for option value - often worse
for Greeks.
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Multilevel path simulation idea

We simulate paths at different levels of fineness:
o At level /, I =0...L, 2 timesteps of width Ay = T/2’.
o Let P, be the payoff with level /'s discretisation.

L
We have E(ﬁ’L) = E(:E)o) + ZE (IS/ — ﬁ)/_l).

I=1
@ With N, samples, we estimate
N
E(P — P1)~ V= & S (P — P
i=1

o We estimate the different V) independently.

@ We reuse the leading brownian motion from IAD, in IE’/_l.
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Complexity Improvements

Variance of our combined estimator:

L L L

~ ~ 1 ~ ~

s V(X W)=Y (V7)) =3 <MV(P, - P,_l))
I=1 I=1 I=1

Computational cost:

L
-1
o Cost ; (N/ h; )

We target an accuracy e:
@ Choose L to make the discretisation bias small enough.
o Take N, ~ m/V(ﬁ’, - ﬁ’,_l)h, to minimise the variance at a
fixed computational cost.

e Choose r big enough to have a O(€?) variance overall.
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MLMC complexity theorem

Theorem

P is a functional of the solution of an SDE. P, is the approximation
with a timestep h;. If there are independent estimators Y; based on
N, samples of cost C; and constants o > %,B,cl,cz,q such that

0 E(Yo) =E(R), VI>1 E(V)=E(P —P_1)
@ [E(P-P)|<ahp

0 V() < N 'h/

Q CG< C3N/hl_1
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MLMC complexity theorem

Then there exists a constant c; such that for any e < e™! there are

L
values of L and N, for which the estimator Y = Z |
I=0

A 2
© Has an MSEE {(Y —~ E(P)) } < e
@ With a complexity

C4€_2 ifg>1

C < ce?(log 6)2 ifg=1
ae2-A=B/e  ifo< <1
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Comments on the complexity theorem

The parameter « is known thanks to literature on weak
convergence of discretisation schemes.

@ Euler and Milstein discretisation: o = 1, even with
discontinuous payoffs (Bally and Talay, 1995).

The parameter [ is related to strong convergence, it determines
the efficiency of the multilevel approach.

@ For a Lipschitz payoff, Euler: g8 =1, Milstein: g = 2,
@ Not as good for discontinuous payoffs.
@ Generally we do not know (3 a priori.
We must create estimators Y} with [ as large as possible.
@ Pathwise sensitivities reduce the smoothness by one order.

@ Multilevel Greeks of nonsmooth payoffs are challenging.
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Multilevel Greeks estimators

We can write

oV OE(P) _ aE(/“DL) 8E Po ZL: P, 1)
o0 — o8 T 08

=1

We estimate this value with

~ M i)
Yo = /\%0 Z agg
N () ()
. opt" op)
Yi=(1/N) Y (— ), 1<i<L
L 00

50 qpl) D)
apt)  dpP dpP
We compute —§-, —7+, —g— as normal MC Greeks with LRM,
PwsS...
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Numerical Experiments

We consider one underlying asset S:

@ Black & Scholes dS; = r S; dt + o Sy dW;

@ Milstein discretization:

Soi1=50-(L+rh+o AW, + % (AW2 - h)):= S, - D,

We consider European options, illustration with:

e Call: P(S) =max(St — K,0) (Lipschitz).

e Digital call: P(S) =1s,-x (Discontinuous).
We illustrate our methods with two sensitivities:

e A: sensitivity to Sg.

@ v: sensitivity to o.
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Multilevel Pathwise Sensitivities

Conditions:
@ P Lipschitz.
@ Only works for the European call.

Implementation (call):

V= [(548)" - (3%8)"]

o g‘g via recurrence:

OSni1 95 . p
n

8’,\

® 35 T 9%
o Lt = 0. D S (AW, + (AW — h))
@ Sum pairs of fine brownian increments to get coarse
increments.

e Saves the cost of generating new increments.
o The coarse and rough paths are close = V(Y) is smaller.
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Multilevel PwS Results

Numerical estimate of 5 + theorem = Estimated complexity.

European Call:
o Value's estimator: 3~ 2.0 = Complexity O(e~2) .
o Delta's estimator: 3~ 0.8 = Complexity O(e~2?).
o Vega's estimator: 3~ 1 = Complexity O(¢~2(log¢)?).
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PwS and Conditional Expectations

Reasons:
@ Extending the PwS to discontinuous payoffs.
e Payoff smoothing unsatisfactory: tradeoff bias/variance.

@ Improving Greeks' convergence rates with nonsmooth payoffs.
Conditional expectation technique:

L .§N(W,Z) = SN_1(1+ rh) —I-O'SN_l \/EZ = uw+UWz
A s 2

o PSMIW) = Lo enp (~ )

o Tower property : E(P(Sy)) = Ey [EZ(P(SNNW)}

E(P(Sn)|W) = & (22K for the digital call.

@ Apply the Multilevel PwS method to this differentiable
function.
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Multilevel PwS Cond Exp results

Implementation
@ Use final step's first half to reduce variance.
° A‘/V/E/C—)l = AWQ(;I)—Z + AW2(I<I)—1
o Tower prop: E [P(Sn)|W| = E [E(P(5n)| W, AW ,)[w/.

f
o E(P(3w)|W.awiy) ) = o (Mt ot 1)
Digital Call:

e Value's estimator: 3 =15 = Complexity O(e2) .

o Delta's estimator: 3 = 0.5 = Complexity O(e~25).

e Vega's estimator: 3= 0.6 = Complexity O(e~2*).
European Call:

o Value's estimator: 3 =2 = Complexity O(e2) .

o Delta's estimator: 3 =1.5 = Complexity O(e2).

o Vega's estimator: 3 =2 = Complexity O(¢~2).
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Split Pathwise Sensitivities

Limitations of conditional expectations:
o Need an analytical expression for E(P(Sy)|Sy_1) and its
derivative.
Principle:
@ Numerical approximation of a conditional expectation.
@ Split each path, take d samples for the final increment.

Fa Fa d ~(m m
E(P(Sn)|Sn-1) ~ Z P(S,(V_)l : D,(\,_)l)-

w ~ oP 83/\/ (m)
83/\/,1 d Z (BSN 8SN 1) ’

@ Use these expressmns as before in Multilevel PwS with
Conditional Expectations.
Warning:
e Conditions apply for Greeks.
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Multilevel Split PwS results

European Call, d =1 (Same as PwS) :
o Value's estimator: 3~ 2.0 = Complexity O(¢~?) .
o Delta's estimator: 3~ 0.9 = Complexity O(e~21).
e Vega's estimator: 3~ 1.3 = Complexity O(¢~2).
European Call, d = 20:
o Value's estimator: 3~ 2.0 = Complexity O(¢~?) .
o Delta's estimator: 3= 1.1 = Complexity O(e2).
o Vega's estimator: 3~ 1.8 = Complexity O(¢~2).
European Call, d = 500 (Similar to PwS with Cond.
Expectations):
o Value's estimator: 3~ 2.0 = Complexity O(¢~?) .
o Delta's estimator: 3~ 1.5 = Complexity O(e2).
@ Vega's estimator: 3~ 2.0 = Complexity O(¢~?).
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Vibrato Monte Carlo

Goal and Principle:
@ Approximate Conditional Expectations for discontinuous P.
° §N =puw +ow’Z.
@ Use PwS on W and LRM on last step Z.

Principle
o V=B [Ez(P(Sn)|W)]
(P

o % =Ew | 5EZ(P(3n)IW)] = Ew [Ez(P(5n) 25 | w)]

00
19)
o f(logps) = 52— (log ps) - %t + 52-(log ps) - 2

° m(log ps), m(log ps) simple functions of Z.

opw 3(71/‘/

° 5o

known by PwS.
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Vibrato Monte Carlo - Multilevel

Multilevel Implementation:
@ Treatment similar to Split PwS.
@ Final step at coarse level:
o AW, = awfl)  +awfl) |
v:EW[ PGwIW|]
= Ew [E [E(PGW)IW, aW) W]

o Apply LRM to ZE(P(Sn)|W, AWS) ).
o OV _
00 —
Io
Ew [Eawe  [Eawn (PGS W, an) ) w]
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Vibrato Monte Carlo results

European Call, d = 100:
o Value's estimator: 3~ 2.0 = Complexity O(¢~?).
o Delta’s estimator: 3~ 1.5 = Complexity O(¢~2).
o Vega's estimator: 3~ 2.0 = Complexity O(¢~2).
Digital Call, d = 100:
o Value's estimator: 3~ 1.2 = Complexity O(e2) .
o Delta's estimator: 3~ 0.3 = Complexity O(e~27).
e Vega's estimator: 3=~ 0.5 = Complexity O(e~2).
Remarks:

@ d > 1 is important to get good approximates of good
approximates of Cond. Exp.

e d =500... 3 similar to Cond. Exp. (1.5,0.5,0.6)
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Conclusion

Final Words

MLMC provides computational savings for the computation of
Greeks:

@ Benefits dependent on 3, convergence rate of V(\A’/)

e Discontinuous/nonsmooth payoffs are challenging:

o Special treatment (Cond. Exp., Vibrato).
e Smaller S.

Unexpected result:
@ v converges slightly faster than A.
@ Consistent feature across all simulations.

Research will now focus on a rigorous numerical analysis of MLMC
for Greeks.
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