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1 
Introduction 

Main macro characteristics of the Vehicular Traffic Flow (VTF) are: 

1. flux, flow Q [auto / time] 

2. density C [auto / length] 

3. mean velocity V [km/hour] 

Approaches to modelling: deterministic and probabilistic (stochastic). 

− In the bases of the deterministic approach lies a functional relation between some of the main VTF 

characteristics, such as, e.g. velocity and the distance between the cars in the VTF. 

− In stochastic models, oh the other hand, the VTF is considered as a probabilistic process. 

All VTF models can be subdivided into three groups: 

• Analog models. VTF is likened to a physical flow: fluid dynamic flow (macroscopic models) and gas 

dynamic flow (mesoscopic or kinetic models). 

• Microscopic (cellular automata, car following model) models. These models are based on the 

assumption that there exists a relation between the movement of the leading and the following cars.  
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2 
VTF MODELS 

 
1) Microscopic models (cellular automata, car following model) 
 
This type of models regards the VTF as a system of 
interacting particles. Moreover, these models use 
Newton equations of motion, written individually for 
each particle in the system. 
 
2) Macroscopic models (fluid dynamic) 
Within this type of models VTF is regarded as a one-dimensional flow of compressible fluid. 
We assume that.  
1. The flow conservation low is valid for VTF (this condition is stated through the continuity 
equation; the on- and off-ramps are taken into account) 

 
2. There exists a one-to-one relation  

between the flux and the density of the VTF 
or 
between the mean velocity and the density of the VTF 
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3 
3) Kinetic 
Within the kinetic theory VTF is considered as a gas, i.e. a system of interacting particles; every 
particle in this system corresponds to a certain vehicle. These models are called mesoscopic due to 
the fact that they use information of the single vehicle behaviour as input and produce results of the 
whole traffic flow. 
 
The most obvious differences of VTF from gas flow are 
- VTF is organized and mostly one dimensional; 
- based on a deterministic set of rules; 
- depends (more or less) on individual drivers. 
 
 
Boltzmann kinetic equation: 
             

 equation describes the probability distribution.  
 
   

this item is responsible for particle interactions in the system. We assume, that the state of a 
vehicle is determined by a number of characteristics. So, interaction of 2 vehicles means 
the event, which leads to any change in the state of these vehicles. 
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4 
Acceleration oriented VTF model (K.T. Waldeer) 

 By analogy with gas kinetic transport theory, the state of a car is determined by a space coordinate and velocity in most 
mesoscopic VTF models. In this type of models the acceleration is a jump process in the velocity variable. 
 In the model, suggested by K.T. Waldeer, the acceleration variable is regarded as one of the phase coordinates, describing 
the state of a car. This modification leads to the discontinuous change of the acceleration variable as a result of the interaction in 
the system (not velocity variable, as it happens in most of kinetic models).  
For a spatial homogeneous traffic flow the Boltzmann-like equation (BE) describing VTF has the following form 

 
 
 
 
∑ is weighted interaction rate function (which determines the type of interaction in the system),  
                is a one-particle probability density, describing the state of a car. 
Boundary condition: 
1) There are no cars with negative velocities (i.e. there are no cars with negative acceleration 

among the cars with V=0); 
2) There is a maximum velocity of a VTF, which can not be exceeded (i.e. there are no cars with 

positive acceleration among the cars with V=Vmax). 
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5 
Initial velocity density without any acceleration:  
Numerical Solving Procedure (K.T.Waldeer) 
We solve the equation with the help of the following 
 splitting the movement and the interaction process  

in 2 parts executed consecutively in a time interval Δt: 
Here    - is a nonlinear operator on the right side of BE, describing the discontinuous stochastic acceleration 
change,                       is a velocity drift operator on the left side of BE. 
Splitting process  
The transition of a state probability density f to a new state at t+Δt is made in 2 steps: 

1)  First, in a given time interval      density  f is changed in the acceleration variable resulting in a 
new, intermediate probability density 

 

2)  Then this intermediate probability density     is changed in velocity due to the drift operator  
                   into a new state probability density at  

Simulation process: 
1) Choose the integration time step Δt 
2) For each of i=1…N cars do 

a) Choose a leading car j  
b) Calculate a new acceleration for car number i  

3) For each of i=1…N cars calculate new velocities                     → vi 
4) The next time step. 
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Integral equation of the second kind

Density f (a, v, t) satisfies the Boltzmann type equation:

∂f

∂t
+a

∂f

∂v
=

∫
v̄,ā,a′

[Σ(a|v, a′, v̄, ā)f (a′, v, t)− Σ(a′|v, a, v̄, ā)f (a, v, t)] f (ā, v̄, t)dādv̄da′

(1)
We obtain an integral equation of the second kind equivalent to (1) to eliminate the

parameter ∆t from the simulation procedure.
Let us introduce the p.d.f. of N -particles system P (A, V, t) = P (a1, v1, . . . , aN , vN , t):

∂P

∂t
+ A

∂P

∂V
+ ν(A, V )P (A, V, t) = JN(A, V, t), here

ν(A, V ) =
1

N − 1

∑
i 6=j

∫
Σ(ai → a′′i |vi, vj, aj) da

′′
i =

∑
i 6=j

ν(ai, vi, vj, aj)

N − 1
=

∑
π

ν(π)

N − 1
.

JN(A, V, t) =

∫
F (A′ → A|V )P (A′, V, t) dA′ =

=
1

N − 1

∑
i 6=j

∫ Σ(a′i → ai|vi, aj, vj)

N∏
m 6=i,m=1

δ(a′m − am)

P (A′, V, t) dA′.
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It is reasonable to use collision density Φ(A, V, t) = ν(A, V )P (A, V, t) rather than
function P for simulating the Markov chain. Moreover, it is even more convenient to use
function Ψ(A, V, t):

Φ(A, V, t) =

t∫
0

∫
Ψ(A, V ′, t′)Kt(t

′ → t|A, V ′) dt′KV (V ′ → V |A, t− t′) dV ′,

In this case the free term is nonzero only for t = 0:

Ψ(A, V, t) = δ(t)P0(A, V )+∫∫ t∫
0

Ψ(A′, V ′, t′)Kt(t
′ → t|A′, V ′) dt′KV (V ′ → V |A′, t− t′) dV ′KA(A′ → A|V ) dA′,

the transition densities are

Kt(t
′→ t|A′, V ′) = χ(t′ < t)ν(A′, V ′+A′(t− t′)) exp

−
t∫

t′

ν(A′, V ′ + A′(τ − t′)) dτ

 ,

KV (V ′→V |A′, t− t′) = δ(V − V ′ − A′(t− t′)), KA(A′→A|V ) =
F (A′ → A|V )

ν(A′, V )
.

The transitions from the state (A′, V ′, t′) to the state (A, V, t) is performed as follows

(A′, V ′, t′) → (A′, V ′, t) → (A′, V, t)
π−→ (A, V, t).
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Stratification according to the pair number

We add the index π of the pair of cars participating in the current interaction in the
system to the phase space. Function Ψ can be represented in the form:

Ψ(A, V, t) =
∑

π

F (π, A, V, t).

We obtain the integral equation for the function F in the modified phase space
(Z, t) = (π, A, V, t):

F (Z, t) = δ(t)P0(A, V )δ(π0) +

t∫
0

∫
F (Z ′, t′)K(Z ′, t′ → Z, t) dZ ′ dt′.

Here π0 is an arbitrary pair number, and the kernel K is the factorization of the transition
densities:

K(Z ′, t′ → Z, t) = Kt(t
′ → t|A′, V ′)KV (V ′ → V |A′, t− t′)Kπ(π)Ka(a

′
i → ai|π, V ).



MCQMC–2010 9

Estimation of the functionals

Usually the following linear functionals are of interest

Ih(T ) =

∫∫
h(v, a)f (T, v, a) dv da.

One can show that [Mikhailov, Rogasinsky]

Ih(T ) =

∫ T∫
0

H(A, V +A(T−t′)) exp

−
T∫

t′

ν(A, V + A(τ − t′) dτ

 F (π, A, V, t′)dZdt′,

here H(V, A) = 1
N

N∑
i=1

h(vi, ai).

For estimation of the latter integral we can use standard collision estimator ξ or
absorbtion one η:

ξ =

S∑
k=0

QkH̃(Ak, Vk, tk, T ),

η = QS
H̃(Ak, Vk, tk, T )

p(Ak, Vk, tk, T )
.
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Majorant frequency method

Let νmax ≥ ν($) for any $ = (i, j) and ν∗ =
∑
i 6=j

νmax/(N − 1) = N · νmax. Then

∂P

∂t
+ A

∂P

∂V
+ ν∗P (A, V, t) = J∗

N(A, V, t) = ν∗
∫

K∗(A′ → A|V )P (A′, V, t) dA′,

K∗ =
∑

π=(i,j)

K∗
π

[(
1− ν ′(π)

νmax

)
δ(a′i − ai) +

ν ′(π)

νmax

Σ(a′i → ai|vi, vj, a
′
j)

ν ′(π)

] ∏
m 6=i

δ(. . .).

K∗
π = [N(N − 1)]−1 is equiprobability distribution of the pair number π of cars partici-

pating in interaction. Time distribution transforms to the exponential one:

K∗
t (t′ → t) = χ(t′ < t)ν∗ exp {−ν∗(t− t′)} ,

For the function F ∗(Z, t) we obtain an integral equation with the kernel

K(Z ′, t′ → Z, t) = K∗
t (t′ → t)KV (V ′ → V |A′, t− t′)K∗

πKa(a
′
i → ai|π = (i, j), V ).

Ih(T ) =

∫ T∫
0

H(A, V + A(T − t′)) exp {−ν∗(T − t′)}F ∗(π, A, V, t′) dZ dt′.
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Model Cases Compared with Analytical Solutions

We consider all the cars to have bounded velocities 0 ≤ vi ≤ Vmax and a single value
acceleration ±a0.

We tested two interaction types to compare with the analytical solutions.

1) Maxwell interaction

Σ(a′i → ai|vi, aj, vj) =
1

T

{
δ(a− a0), vi ≤ vj,
δ(a + a0), vj < vi.

In this case ν(π) = const = 1/T , ν∗ = N/T . Under these conditions, kinetic
equation can be solved analytically in stochastic equilibrium, resulting in

f (v, a) =
π

4
√

3σv

cosh−2

{
π

2
√

3

(v − V )

σv

}
δ(a− a0) + δ(a + a0)

2
,

with the mean V and the variance σ2
v = (πT a0)

2/3. We used the following parameters
in the computer simulation with N = 1000 stochastic cars and M = 1000 runs:
σ2

0 = 0.1 m2/s2, V = 20 m/s,a0 = 0.3 m/s2, T = 18 s, T = 2 s, σv = 1.088 m/s.
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2) Hard sphere interaction

Σ(a′i → ai|vi, aj, vj) = r0|vj − vi|
{

δ(a− a0), vi ≤ vj,
δ(a + a0), vj < vi.

In this case ν(π) = r0|vi − vj|, νmax = r0Vmax, ν∗ = NVmaxr0. The solution in
stochastic equilibrium is given by

f (v, a) =
1√

2πσv

exp

{
−(v − V )2

2σ2
v

}
δ(a− a0) + δ(a + a0)

2
,

with the mean V and the variance σ2
v = a0/r0. We used the following parameters in the

computer simulation with N = 1000 stochastic cars and M = 1000 runs:
σ2

0 = 0.1 m2/s2, V = 20 m/s, a0 = 0.3 m/s2, T = 62 s, r0 = 0.25 m−1, σv = 1.095 m/s.
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Figure 1: Estimation of f (v) for the Maxwell interaction, T = 18 s:
1 – exact solution, 2 – estimation, 3 – confidence interval ±3σ.
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Figure 2: Estimation of f (v) for the hard sphere interaction, T = 62 s:
1 – exact solution, 2 – estimation, 3 – confidence interval ±3σ.


	Traffic_0_2010.pdf
	Traffic_1_2010.pdf
	Traffic_2_2010.pdf

