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Outline

e Credit Risk Modeling: Classical Models

e Joint Default Probability, Importance Sam-
pling, and Large Deviation

e Homogenization by Singular Perturbation
and Effect of (Stochastic) Correlation



Modeling Default Times:
Bottom Up Approach

Notation: 7;: default time of firm q.

e Intensity-Based (Reduced Form)
View firm’s default as exogenous.

P(r; <) = F(t) ‘= 1 — exp {— /Ot hi(s)ds} |

e Asset Value-Based (Structural Form)
Firm asset values follow correlated processes,
say geometric Brownian motions:
dSit = p; S5t dt405 SjdWiy, d < Wi, W >4= p;;dt.
A default event {7, < T} :=1(S; 7 < B;).
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Application I. Loss Density Function

The loss random variable L(T') is defined by

N

L(T) = ) ¢l(r; <T).
1=1

If the density of L(T) is known, one can in-
vestigate credit portfolio risk management,
pricing credit derivatives, etc.



Application II: Evaluation of Credit Swaps

F{(1—R)xB(O,7) xI(r<T)}
E{Zé\le Aj—l,j X B(O,t') X I(T > t])}

premaium =

Notations: 7: default time, R: recovery rate,
B(0,t): discount factor, A;_1 ;. time incre-
ment.

CDS: 7 is the time to default of an asset.
BDS: 7 is an order statistics of 71,71, -, ™.



Then we ask a question
JDP = E{I‘I?le(TZ- < T)}?
And hope this leads to the estimation of
(1) P(L(T) = 1) = p;,
(2) P(r <T),where 7 is the k-th order statis-

tics of {m;}i—q .

JDP = joint default probability



Correlation under Reduced Form Model:
Copula Method*®

1. Default Time: {’TZ‘ = F,L-_]L (Ui)}?—l’ U's
are [0,1]-uniform random variables.
2. Copulais a distribution function on [0, 1]
with uniform marginal distributions.
3. Through a copula function, one can
build up correlations between default times.

*Cherubini, Luciano, Vecchiato (2004), Nel-
son(2006).



Characterization of Default Events

Gaussian Copula Factor Model (Laurent and
Gregory (2003))

{r; = F Y (®(Wy)) < T}
{Wi = piZo+\/1—p?Z; < ¢_1(F7;(T))}

S O~ H(EF(T)) — /1 — p?z;
0

- Pi

WheﬂZi =z

\
(
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_ o 9THE@) oo

whenZg = zp.




(Conditional) Importance Sampling

Estimate the JDP E{H?’ZlI(Ti < T)} by

(1) Condition on marginal factors (Chiang,
Yuah, Hsieh (2007))

_ ci—/1—piZi
E{E{I‘I?III<Z0§ i )L(Zo;u)Zl,...,Zn}}
Pi

(2) Condition on common factor

oy i — PiZ
E{E( oy Un) {I"I?le(Zi < Ci — p Z)n;”;lL(Zz';ui) | Zo}}

(3) Direct Change of Measure

EA{T]_, (Wi < )M L(Wi; wi) }

Notations: ¢; = ®~1(F;(T)) and L(-,-) the Likelihood
ratio.




Variance Reduction Comparison of IS
Estimators: Guassian Distribution

S.E. Reduction Ratio
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Asymptotic Optimality of
Direct Change of Measure

Let W be a centered multivariate normal

JDP = E{I(W < ¢)} = E, {I(W < )N L(Wj; 113)},

where L(w; u) = exp(—pw4+pu2/2) is the like-
lihood function.

Theorem The variance of I{W<C}I‘I?:1L(Wi; L4;)
is optimally minimized at u = ¢ when each
component in the vector —c is sufficiently
large.

Proof: By Cramer’'s Theorem in large devi-
ation theory.
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Generalizations

e Computation of tail probability for multi-
variate normals. (versus a Matlab program
mvncdf.m, based on Genz and Bretz ('99))

e Equivalent to Black-Scholes’s structural-
form model model in high dimension to es-
timate F {I‘I?ZII(SZ-T < BZ-)}.

e Based on Glasserman et al. (2002), com-
pute tail probability of multivariate Student
T dist. (versus mvtcdf.m).
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Gaussian Tail Probability Estimation:

IS vs. mvncdf.m

Basic MC Importance Sampling Quasi MC

n Mean SE Mean SE Value Error

5 4E-05 4E-05 | 1.41E-05 5.62E-07 | 1.40E-05 1.59E-07
10 - - 2.10E-07 1.96E-08 | 1.99E-07 1.33E-08
15 - - 1.42E-08 2.20E-09 | 1.58E-08 2.92E-09
20 - - 1.99E-09 5.36E-10 | 2.48E-09 5.13E-10
25 - - 5.48E-10 1.28E-10 | 6.98E-10 5.20E-10
30 - - 1.71E-10 6.81E-11 - -

50 - - 4.06E-12 2.17E-12 - -

c= —2,p= 0.5, and the total number of simulations=25000.
Averaged CPU time:
tively, without dimensions of 30 and 50.

4.29E-02, 9.64E-02, 2.16E-01,
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Variance Reduction Comparison of IS
Estimators: Student T Distribution

S.E. Reduction Ratio

18.00 | —¢—conditional on Chi-square random variable
16.00 —d—Direct Importance Sampling
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Student T Tail Probability Estimation:
IS vs. mvtcdf.m

Basic MC IS Quasi MC
n Mean SE Mean SE Value Error
5 2.4E-04 9.8E-05 | 2.00E-04 6.41E-06 | 1.94E-04 1.19E-05
10 - - 1.30E-05 9.18E-07 | 1.31E-05 4.17E-06
15 - - 3.25E-06 3.42E-07 | 2.40E-06 9.26E-07
20 - - 8.89E-07 1.85E-07 | 1.03E-06 8.93E-07
25 - - 2.51E-07 5.23E-08 | 1.70E-07 1.25E-07
30 - - 1.21E-07 2.54E-08 - -
50 - - 7.53E-09 4.53E-09 - -
c= —2, p= 0.5, degree of freedom is 10, and the total number
of simulation is 25000.
Averaged CPU time: 4.39E-02, 1.27E-01, 2.39E-01, respec-

tively.
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Credit Risk Modeling:
Structural Form Approach

Multi-Names Dynamics: for 1 <i:<n

dSit = piSirdt + 0 S;pdWig,

d<Wz’ta th> = p;j;dt.
Each default time 7; for the it* name is de-
fined as 7, = inf{t > 0:5; < B;}, where B;

denotes the i** debt level.
The ith default event is defined as {r; < T'}.

15



Joint Default Probability:
First Passage Time Problem in High Dim.

Q: How to compute JDP = FE {I‘I?le(n < T)}
under structural-form models?

Explicit Formulas exist for 1-name case (Black
and Cox '76) and 2-name case (Zhou '01).

Note that Carmona, Fouque, and Vestal ('09)
dealed with a similar problem by means of
Interacting Particle Systems.
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Multi-Dimensional Girsanov Theorem

Given the Radon-Nikodym derivative

AP _ o _ e(fOT h(s,Ss)-dWs—%fg||h(s,SS)||2ds)
diP ’

Wy = Wi+ J{h(s, Ss)ds is a vector of Brown-
ian motions under P. Thus

DP=F {I‘I?’le(Ti < T)Ql}} .
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Monte Carlo Simulations:
Importance Sampling

An importance sampling method is devel-
oped to satisfy

E {S;r|Fo} =Bj,i=1,---,n.

The new measure is characterized by solving
- i . — M _ InBi/Sio
the linear system ijlpmh] = 0;% o T

so that by Girsanov Theorem

JDP = E{N{—11(7; <T)Qr}.
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Single Name Default Probability

B BMC Exact Sol Importance Sampling
50 | 0.0886 (0.0028) 0.0945 0.0890 (0.0016)

20 0 (0) 7.7%x107° | 7.2%x107°>(2.3%x107°)
1 0 (0) 1.3%x10°39 | 1.8%x10°39(3.4x10°31)

The number of simulations is 10* and the Euler discretization

takes time step size T//400, where T is one year.

Other parameters are So = 100, = 0.05 and o0 = 0.4. Standard

errors are shown in parenthesis.
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Asymptotic Optimality
Efficient Importance Sampling

Assume In (B;/S;0) = —* for each 1 <i < N.
Denote by P: JDP and M5, the second mo-
ment under a new measure:

P. = E[rlgV:lI( inf Sz-thi)]

0<t<T

M. = FE [ngvzll( inf Sy < B@-> QT]

0<t<T

Theorem: By Ms, =~ (P:)? for small ¢ (spa-
tial scale) we observe the optimality of cho-
Sen measure.

Proof: by Freidlin-Wentzellthm or a PDE ar-
gument.

20



Tail Probability Estimation
the first passage time problem *

Basic MC Importance Sampling
Names Mean SE Mean SE

2 1.1E-03 3.31E-04 | 1.04E-03 2.83E-05

5 - - 6.36E-06 3.72E-07
10 - - 2.90E-07 2.66E-08
15 - - 9.45E-09 1.16E-09
20 - - 1.15E-09 1.98E-10
25 - - 2.06E-10 3.84E-11
30 - - 6.76E-11 2.36E-11
35 - - 1.35E-11 2.89E-12
40 - - 6.59E-12 1.58E-12
45 - - 3.25E-12 1.08E-12
50 - - 6.76E-13 2.26E-13
Parameters are So = 100, = 0.05, ¢ = 0.3, p = 0.3,

B = 50.

*H. (2010)
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LLoss Density Function: 25 Names
Diffusion Model

uuuuuuuuuuuuuuuuuu

Note: Consider both survival and default prob-
abilities.
Applications: Pricing CDOs, Risk Manage-

ment of credit portfolios, etc.
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LLoss Density Function: 25 Names
Jump Diffusion Model

Use the compound poisson jump as a com-

mon factor.

But optimal efficiency can not be obtained.
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A Modification: Stochastic Correlation®

( dS} = rStdt + o1 StdW
dS? = rS2dt + 0252 (p(YD)dWE + /1 — p? (Y1) dW?)
dY; = L(m — Yi)dt + %dzt (Scaling in Time)
Joint default probability

7\

- 2 - '
Pe(t,z1,20,Yy) i= Ex{ a0y {”7;:1 I(tgllgnT Sy, < Bi)}

*Hull, Presescu, White (2005)
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Full Expansion of P¢

T heorem

o
Pg(t,m]_,ZCQ,y) — Z 82Pi(t,x1’$2,y),
i=0
where Pz-’s can be obtained recursively by solv-
ing a seq. of Poisson egns.

Proof: by means of Singular Perturbation
Techniques.
Accuracy results are ensured given smooth-
ness of terminal condition.
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Leading Order Term

Py(t,xz1,x>) solves the homogenized PDE
(y-independent).

(51,0 + ﬁ£1,1> Po(t,z1,22) =0
p =< p(y) >, average taken wrt the invar-
tiant measure of Y.

Differential operators are

5. 2 52 5,
r —
1.0 at+§1 > a2 Z”’L%axi
82
L11 = 01027172

ax18$2.
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Other Terms

T )
Poy1(t,zr,0,y) = Y w0 (y) Iy 11 Pn
120,721

where a seq. of Poisson eqns to be solved:
Lot W) = (¢ - < W) >)
Lot TV () = (p(y) o ()~ < pel™ )
where Lo = 5253_y2 (m — y)(%
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Stochastic Correlation I

= % BMC Importance Sampling
0.1 | 0.0037(6*107%) (1%x107%)

1 0.0074(9 x 10~%) 0.0065(2 * 10~%)
10 | 0.0112(1%1073) 0.0116(4 x 10~%)
50 0.0163(1 * 1073) 0.0137(5 % 10~%)
100 0.016(1 x1073) 0.0132(4 *107%)

«

Parameters are S19 = Spg = 100, B; = 50, By =
40,m = m/4,v = 0.5, p(y) = |sin(y)|.

Using the homogenized term in IS, note
the effect of correlation.
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Stochastic Correlation II

a:% BMC Importance Sampling
0.1 0(0) (7 x 1079)

1 0(0) 7.5%x107°(6%107")
10 0(0) 2.4%107°(2%107°)
50 1x107%(1%107%) | 2.9%x107°(3%107°)
100 | 1x107%(1%x107%) | 2710 °(2%1079)

Parameters are S19g = Sog = 100, By = 30, By =
20,m =n/4,v = 0.5.

Note the effect of correlation.
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Conclusions

e Simple yet efficient importance sampling
methods are proposed, justified by large
deviation theory.

e Full expansion of joint default probability
under stochastic correlation by singular
perturbation.

e Of course all these ideas can be applied
to option pricing, complex model calibra-
tion, etc.
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