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Outline

• Credit Risk Modeling: Classical Models

• Joint Default Probability, Importance Sam-

pling, and Large Deviation

• Homogenization by Singular Perturbation

and Effect of (Stochastic) Correlation
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Modeling Default Times:
Bottom Up Approach

Notation: τi: default time of firm i.

• Intensity-Based (Reduced Form)
View firm’s default as exogenous.

IP (τi ≤ t) = Fi(t) := 1− exp
{
−
∫ t

0
hi(s)ds

}
.

• Asset Value-Based (Structural Form)
Firm asset values follow correlated processes,
say geometric Brownian motions:

dSi t = µi Si t dt+σi Si tdWi t, d < Wi,Wj >t= ρijdt.

A default event {τi ≤ T} := I(Si T ≤ Bi).
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Application I: Loss Density Function

The loss random variable L(T ) is defined by

L(T ) =
N∑
i=1

ci I(τi ≤ T ).

If the density of L(T ) is known, one can in-

vestigate credit portfolio risk management,

pricing credit derivatives, etc.
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Application II: Evaluation of Credit Swaps

premium =
IE {(1−R)×B(0, τ)× I(τ < T )}

IE
{∑N

j=14j−1, j ×B(0, tj)× I(τ > tj)
}

Notations: τ : default time, R: recovery rate,

B(0, t): discount factor, 4j−1, j: time incre-

ment.

CDS: τ is the time to default of an asset.

BDS: τ is an order statistics of τ1, τ2, · · · , τn.
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Then we ask a question

JDP = E
{

Πn
i=1I(τi ≤ T )

}
?

And hope this leads to the estimation of

(1) P (L(T ) = i) = pi,

(2) P (τ ≤ T ), where τ is the k-th order statis-

tics of {τi}ni=1 .

JDP = joint default probability
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Correlation under Reduced Form Model:

Copula Method∗

1. Default Time:
{
τi = F−1

i (Ui)
}n
i=1

, U ’s

are [0,1]-uniform random variables.

2. Copula is a distribution function on [0,1]n

with uniform marginal distributions.

3. Through a copula function, one can

build up correlations between default times.

∗Cherubini, Luciano, Vecchiato (2004), Nel-
son(2006).
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Characterization of Default Events

Gaussian Copula Factor Model (Laurent and
Gregory (2003))

{τi = F−1
i (Φ(Wi)) ≤ T}

=
{
Wi := ρiZ0 +

√
1− ρ2

i Zi ≤ Φ−1(Fi(T ))
}

=

Z0 ≤
Φ−1(Fi(T ))−

√
1− ρ2

i zi

ρi

whenZi = zi

=

Zi ≤ Φ−1(Fi(T ))− ρiz0√
1− ρ2

i

whenZ0 = z0.
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(Conditional) Importance Sampling

Estimate the JDP IE
{∏n

i=1 I(τi ≤ T )
}

by

(1) Condition on marginal factors (Chiang,
Yuah, Hsieh (2007))

IE

{
ĨE

{
Πn
i=1I

(
Z0 ≤

ci −
√

1− ρ2
i Zi

ρi

)
L(Z0;u)|Z1, · · · , Zn

}}
(2) Condition on common factor

IE

{
ĨE

(u1,···,un)

{
Πn
i=1I(Zi ≤

ci − ρiZ0√
1− ρ2

i

)Πn
i=1L(Zi;ui) | Z0

}}
(3) Direct Change of Measure
ĨE
{∏n

i=1
I(Wi ≤ ci)Πn

i=1L(Wi;wi)
}

Notations: ci = Φ−1(Fi(T )) and L(·, ·) the Likelihood

ratio.
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Variance Reduction Comparison of IS

Estimators: Guassian Distribution
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Asymptotic Optimality of
Direct Change of Measure

Let W be a centered multivariate normal

JDP = E{I(W < c)} = Eµ {I(W < c)Πn
i=1L(Wi;µi)} ,

where L(w;µ) = exp(−µw+µ2/2) is the like-
lihood function.

Theorem The variance of I{W<c}Π
n
i=1L(Wi;µi)

is optimally minimized at µ = c when each
component in the vector −c is sufficiently
large.
Proof: By Cramer’s Theorem in large devi-
ation theory.
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Generalizations

• Computation of tail probability for multi-
variate normals. (versus a Matlab program
mvncdf.m, based on Genz and Bretz (’99))

• Equivalent to Black-Scholes’s structural-
form model model in high dimension to es-
timate IE

{
Πn
i=1I(SiT ≤ Bi)

}
.

• Based on Glasserman et al. (2002), com-
pute tail probability of multivariate Student
T dist. (versus mvtcdf.m).
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Gaussian Tail Probability Estimation:

IS vs. mvncdf.m

Basic MC Importance Sampling Quasi MC
n Mean SE Mean SE V alue Error
5 4E-05 4E-05 1.41E-05 5.62E-07 1.40E-05 1.59E-07

10 - - 2.10E-07 1.96E-08 1.99E-07 1.33E-08
15 - - 1.42E-08 2.20E-09 1.58E-08 2.92E-09
20 - - 1.99E-09 5.36E-10 2.48E-09 5.13E-10
25 - - 5.48E-10 1.28E-10 6.98E-10 5.20E-10
30 - - 1.71E-10 6.81E-11 - -
50 - - 4.06E-12 2.17E-12 - -

c = −2, ρ = 0.5, and the total number of simulations=25000.
Averaged CPU time: 4.29E-02, 9.64E-02, 2.16E-01, respec-
tively, without dimensions of 30 and 50.
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Variance Reduction Comparison of IS

Estimators: Student T Distribution
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Student T Tail Probability Estimation:

IS vs. mvtcdf.m

Basic MC IS Quasi MC
n Mean SE Mean SE V alue Error
5 2.4E-04 9.8E-05 2.00E-04 6.41E-06 1.94E-04 1.19E-05

10 - - 1.30E-05 9.18E-07 1.31E-05 4.17E-06
15 - - 3.25E-06 3.42E-07 2.40E-06 9.26E-07
20 - - 8.89E-07 1.85E-07 1.03E-06 8.93E-07
25 - - 2.51E-07 5.23E-08 1.70E-07 1.25E-07
30 - - 1.21E-07 2.54E-08 - -
50 - - 7.53E-09 4.53E-09 - -

c = −2, ρ = 0.5, degree of freedom is 10, and the total number
of simulation is 25000.
Averaged CPU time: 4.39E-02, 1.27E-01, 2.39E-01, respec-
tively.
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Credit Risk Modeling:

Structural Form Approach

Multi-Names Dynamics: for 1 ≤ i ≤ n

dSit = µiSitdt+ σi SitdWit,

d
〈
Wit,Wjt

〉
= ρijdt.

Each default time τi for the ith name is de-

fined as τi = inf{t ≥ 0 : Sit ≤ Bi}, where Bi
denotes the ith debt level.

The ith default event is defined as {τi ≤ T}.
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Joint Default Probability:

First Passage Time Problem in High Dim.

Q: How to compute JDP = IE
{

Πn
i=1I(τi ≤ T )

}
under structural-form models?

Explicit Formulas exist for 1-name case (Black

and Cox ’76) and 2-name case (Zhou ’01).

Note that Carmona, Fouque, and Vestal (’09)

dealed with a similar problem by means of

Interacting Particle Systems.
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Multi-Dimensional Girsanov Theorem

Given the Radon-Nikodym derivative

dIP

dĨP
= QhT = e

(∫ T
0 h(s,Ss)·dW̃s−1

2

∫ T
0 ||h(s,Ss)||2ds

)
,

W̃t = Wt+
∫ t
0 h(s, Ss)ds is a vector of Brown-

ian motions under ĨP . Thus

DP = ĨE
{

Πn
i=1I(τi ≤ T )QhT

}
.
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Monte Carlo Simulations:

Importance Sampling

An importance sampling method is devel-

oped to satisfy

ĨE {SiT |F0} = Bi, i = 1, · · · , n.

The new measure is characterized by solving

the linear system Σi
j=1ρijhj = µi

σi
− lnBi/Si0

σi T
so that by Girsanov Theorem

JDP = ĨE {Πn
i=1I(τi ≤ T )QT} .
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Single Name Default Probability

B BMC Exact Sol Importance Sampling
50 0.0886 (0.0028) 0.0945 0.0890 (0.0016)
20 0 (0) 7.7 ∗ 10−5 7.2 ∗ 10−5(2.3 ∗ 10−6)
1 0 (0) 1.3 ∗ 10−30 1.8 ∗ 10−30(3.4 ∗ 10−31)

The number of simulations is 104 and the Euler discretization

takes time step size T/400, where T is one year.

Other parameters are S0 = 100, µ = 0.05 and σ = 0.4. Standard

errors are shown in parenthesis.
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Asymptotic Optimality
Efficient Importance Sampling

Assume ln (Bi/Si0) = −1
ε for each 1 ≤ i ≤ N .

Denote by Pε JDP and M2ε the second mo-
ment under a new measure:

Pε = IE

[
ΠN
i=1I

(
inf

0≤t≤T
Sit ≤ Bi

)]
M2ε = ĨE

[
ΠN
i=1I

(
inf

0≤t≤T
Sit ≤ Bi

)
QT

]
Theorem: By M2ε ≈ (Pε)2 for small ε (spa-

tial scale) we observe the optimality of cho-
sen measure.
Proof: by Freidlin-Wentzellthm or a PDE ar-
gument.
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Tail Probability Estimation :

the first passage time problem ∗

Basic MC Importance Sampling
Names Mean SE Mean SE

2 1.1E-03 3.31E-04 1.04E-03 2.83E-05
5 - - 6.36E-06 3.72E-07

10 - - 2.90E-07 2.66E-08
15 - - 9.45E-09 1.16E-09
20 - - 1.15E-09 1.98E-10
25 - - 2.06E-10 3.84E-11
30 - - 6.76E-11 2.36E-11
35 - - 1.35E-11 2.89E-12
40 - - 6.59E-12 1.58E-12
45 - - 3.25E-12 1.08E-12
50 - - 6.76E-13 2.26E-13

Parameters are S0 = 100, µ = 0.05, σ = 0.3, ρ = 0.3, and

B = 50.

∗H. (2010)
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Loss Density Function: 25 Names
Diffusion Model

Note: Consider both survival and default prob-
abilities.
Applications: Pricing CDOs, Risk Manage-
ment of credit portfolios, etc.
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Loss Density Function: 25 Names
Jump Diffusion Model

0 5 10 15 20 25
10−25

10−20

10−15

10−10

10−5

100
Loss density function of N=25

Number of defaults

P(
L=

n)

Use the compound poisson jump as a com-
mon factor.
But optimal efficiency can not be obtained.
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A Modification: Stochastic Correlation∗


dS1

t = rS1
t dt+ σ1S

1
t dW

1
t

dS2
t = rS2

t dt+ σ2S
2
t (ρ(Yt)dW1

t +
√

1− ρ2(Yt)dW2
t )

dYt = 1
ε(m− Yt)dt+

√
2β√
ε
dZt (Scaling in Time)

Joint default probability

P ε(t, x1, x2, y) := IEx1,x2,y

{
Π2
i=1 I( min

t≤u≤T
Siu ≤ Bi)

}

∗Hull, Presescu, White (2005)
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Full Expansion of P ε

Theorem

P ε(t, x1, x2, y) =
∞∑
i=0

εiPi(t, x1, x2, y),

where P ′is can be obtained recursively by solv-

ing a seq. of Poisson eqns.

Proof: by means of Singular Perturbation

Techniques.

Accuracy results are ensured given smooth-

ness of terminal condition.
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Leading Order Term

P0(t, x1, x2) solves the homogenized PDE
(y-independent).(

L1,0 + ρ̄L1,1

)
P0(t, x1, x2) = 0

ρ̄ =< ρ(y) >, average taken wrt the invar-
tiant measure of Y.

Differential operators are

L1,0 =
∂

∂t
+

2∑
i=1

σ2
i x

2
i

2

∂2

∂x2
i

+
2∑
i=1

µixi
∂

∂xi

L1,1 = σ1σ2x1x2
∂2

∂x1∂x2
.
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Other Terms

Pn+1(t, x1, x2, y) =
i+j=n+1∑
i≥0,j≥1

ϕ
(n+1)
i,j (y)Li1,0L

j
1,1 Pn

where a seq. of Poisson eqns to be solved:

L0ϕ
(n+1)
i+1,j (y) =

(
ϕ

(n)
i,j (y)− < ϕ

(n)
i,j (y) >

)
L0ϕ

(n+1)
i,j+1 (y) =

(
ρ(y)ϕ(n)

i,j (y)− < ρϕ
(n)
i,j >

)
,

where L0 = β2 ∂2

∂y2 + (m− y) ∂∂y .
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Stochastic Correlation I

α = 1
ε

BMC Importance Sampling
0.1 0.0037(6 ∗ 10−4) 0.0032(1 ∗ 10−4)
1 0.0074(9 ∗ 10−4) 0.0065(2 ∗ 10−4)

10 0.0112(1 ∗ 10−3) 0.0116(4 ∗ 10−4)
50 0.0163(1 ∗ 10−3) 0.0137(5 ∗ 10−4)

100 0.016(1 ∗ 10−3) 0.0132(4 ∗ 10−4)

Parameters are S10 = S20 = 100, B1 = 50, B2 =

40,m = π/4, ν = 0.5, ρ(y) = |sin(y)|.

Using the homogenized term in IS, note

the effect of correlation.
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Stochastic Correlation II

α = 1
ε

BMC Importance Sampling
0.1 0(0) 9.1 ∗ 10−7(7 ∗ 10−8)
1 0(0) 7.5 ∗ 10−6(6 ∗ 10−7)

10 0(0) 2.4 ∗ 10−5(2 ∗ 10−6)
50 1 ∗ 10−4(1 ∗ 10−4) 2.9 ∗ 10−5(3 ∗ 10−6)

100 1 ∗ 10−4(1 ∗ 10−4) 2.7 ∗ 10−5(2 ∗ 10−6)

Parameters are S10 = S20 = 100, B1 = 30, B2 =

20,m = π/4, ν = 0.5.

Note the effect of correlation.
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Conclusions

• Simple yet efficient importance sampling

methods are proposed, justified by large

deviation theory.

• Full expansion of joint default probability

under stochastic correlation by singular

perturbation.

• Of course all these ideas can be applied

to option pricing, complex model calibra-

tion, etc.
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