Estimating Joint Default Probability by Efficient Importance Sampling with Applications from Bottom Up

Chuan-Hsiang Han

Dept. of Quantitative Finance Natl. Tsing-Hua University, Taiwan

MCQMC, Warsaw

August, 17, 2010

Outline

Credit Risk Modeling: Classical Models

 Joint Default Probability, Importance Sampling, and Large Deviation

 Homogenization by Singular Perturbation and Effect of (Stochastic) Correlation

Modeling Default Times: Bottom Up Approach

Notation: τ_i : default time of firm i.

• Intensity-Based (Reduced Form) View firm's default as exogenous.

$$P(\tau_i \le t) = F_i(t) := 1 - \exp\left\{-\int_0^t h_i(s)ds\right\}.$$

• Asset Value-Based (Structural Form)
Firm asset values follow correlated processes,
say geometric Brownian motions:

$$dS_{it} = \mu_i S_{it} dt + \sigma_i S_{it} dW_{it}, d < W_i, W_j >_t = \rho_{ij} dt.$$

A default event $\{\tau_i \leq T\} := \mathbf{I}(S_{iT} \leq B_i).$

Application I: Loss Density Function

The loss random variable L(T) is defined by

$$L(T) = \sum_{i=1}^{N} c_i \mathbf{I}(\tau_i \leq T).$$

If the density of L(T) is known, one can investigate credit portfolio risk management, pricing credit derivatives, etc.

Application II: Evaluation of Credit Swaps

$$premium = \frac{\mathbb{E}\left\{ (1 - R) \times B(0, \tau) \times \mathbf{I}(\tau < T) \right\}}{\mathbb{E}\left\{ \sum_{j=1}^{N} \triangle_{j-1, j} \times B(0, t_j) \times \mathbf{I}(\tau > t_j) \right\}}$$

Notations: τ : default time, R: recovery rate,

B(0,t): discount factor, $\triangle_{j-1,j}$: time increment.

CDS: τ is the time to default of an asset.

BDS: τ is an order statistics of $\tau_1, \tau_2, \dots, \tau_n$.

Then we ask a question

$$\mathsf{JDP} = E\left\{ \mathsf{\Pi}_{i=1}^{n} \mathbf{I}(\tau_{i} \leq T) \right\}?$$

And hope this leads to the estimation of

- (1) $P(L(T) = i) = p_i$,
- (2) $P(\tau \leq T)$, where τ is the k-th order statistics of $\{\tau_i\}_{i=1}^n$.

JDP = joint default probability

Correlation under Reduced Form Model: Copula Method*

- 1. Default Time: $\left\{\tau_i = F_i^{-1}\left(U_i\right)\right\}_{i=1}^n$, *U*'s are [0,1]-uniform random variables.
- 2. Copula is a distribution function on $[0,1]^n$ with uniform marginal distributions.
- 3. Through a **copula function**, one can build up correlations between default times.

^{*}Cherubini, Luciano, Vecchiato (2004), Nelson(2006).

Characterization of Default Events

Gaussian Copula Factor Model (Laurent and Gregory (2003))

$$\{ \tau_i = F_i^{-1}(\Phi(W_i)) \le T \}$$

$$= \left\{ \begin{aligned} W_i &:= \rho_i Z_0 + \sqrt{1 - \rho_i^2} Z_i \le \Phi^{-1}(F_i(T)) \right\} \\ &= \left\{ Z_0 \le \frac{\Phi^{-1}(F_i(T)) - \sqrt{1 - \rho_i^2} z_i}{\rho_i} \right\} \text{ when } Z_i = z_i \\ \\ &= \left\{ Z_i \le \frac{\Phi^{-1}(F_i(T)) - \rho_i z_0}{\sqrt{1 - \rho_i^2}} \right\} \text{ when } Z_0 = z_0.$$

(Conditional) Importance Sampling

Estimate the JDP $\mathbb{E}\left\{\prod_{i=1}^{n}\mathbf{I}(\tau_{i}\leq T)\right\}$ by

(1) Condition on marginal factors (Chiang, Yuah, Hsieh (2007))

$$\mathbb{E}\left\{\tilde{\mathbb{E}}\left\{\Pi_{i=1}^{n}\mathbf{I}\left(Z_{0}\leq\frac{c_{i}-\sqrt{1-\rho_{i}^{2}}Z_{i}}{\rho_{i}}\right)L(Z_{0};u)|Z_{1},\cdots,Z_{n}\right\}\right\}$$

(2) Condition on common factor

$$\mathbb{E}\left\{\tilde{\mathbb{E}}^{(u_1,\cdots,u_n)}\left\{\Pi_{i=1}^n\mathbf{I}(Z_i\leq \frac{c_i-\rho_iZ_0}{\sqrt{1-\rho_i^2}})\Pi_{i=1}^nL(Z_i;u_i)\mid Z_0\right\}\right\}$$

(3) Direct Change of Measure

$$\tilde{\mathbb{E}}\left\{\prod_{i=1}^n \mathbf{I}(W_i \leq c_i) \prod_{i=1}^n L(W_i; w_i)\right\}$$

Notations: $c_i = \Phi^{-1}(F_i(T))$ and $L(\cdot, \cdot)$ the Likelihood ratio.

Variance Reduction Comparison of IS Estimators: Guassian Distribution

Asymptotic Optimality of Direct Change of Measure

Let W be a centered multivariate normal

$$JDP = E\{I(W < c)\} = E_{\mu}\{I(W < c)\Pi_{i=1}^{n}L(W_{i}; \mu_{i})\},$$
 where $L(w; \mu) = \exp(-\mu w + \mu^{2}/2)$ is the likelihood function.

Theorem The variance of $I_{\{W < c\}} \Pi_{i=1}^n L(W_i; \mu_i)$ is optimally minimized at $\mu = c$ when each component in the vector -c is sufficiently large.

Proof: By Cramer's Theorem in large deviation theory.

Generalizations

- Computation of tail probability for multivariate normals. (versus a Matlab program mvncdf.m, based on Genz and Bretz ('99))
- Equivalent to Black-Scholes's structural-form model model in high dimension to estimate $E\left\{\Pi_{i=1}^{n}\mathbf{I}(S_{iT}\leq B_{i})\right\}$.
- Based on Glasserman et al. (2002), compute tail probability of multivariate Student T dist. (versus mvtcdf.m).

Gaussian Tail Probability Estimation: IS vs. mvncdf.m

	Basic MC		Importance Sampling		Quasi MC	
n	Mean	SE	Mean	SE	Value	Error
5	4E-05	4E-05	1.41E-05	5.62E-07	1.40E-05	1.59E-07
10	_	-	2.10E-07	1.96E-08	1.99E-07	1.33E-08
15	_	-	1.42E-08	2.20E-09	1.58E-08	2.92E-09
20	_	-	1.99E-09	5.36E-10	2.48E-09	5.13E-10
25	_	-	5.48E-10	1.28E-10	6.98E-10	5.20E-10
30	_	-	1.71E-10	6.81E-11	_	_
50	-	-	4.06E-12	2.17E-12	-	-

 $c=-2, \rho=0.5$, and the total number of simulations=25000. Averaged CPU time: 4.29E-02, 9.64E-02, 2.16E-01, respectively, without dimensions of 30 and 50.

Variance Reduction Comparison of IS Estimators: Student T Distribution

S.E. Reduction Ratio

Student T Tail Probability Estimation: IS vs. mvtcdf.m

	Basic MC		IS		Quasi MC	
n	Mean	SE	Mean	SE	Value	Error
5	2.4E-04	9.8E-05	2.00E-04	6.41E-06	1.94E-04	1.19E-05
10	-	-	1.30E-05	9.18E-07	1.31E-05	4.17E-06
15	_	-	3.25E-06	3.42E-07	2.40E-06	9.26E-07
20	_	-	8.89E-07	1.85E-07	1.03E-06	8.93E-07
25	_	-	2.51E-07	5.23E-08	1.70E-07	1.25E-07
30	_	-	1.21E-07	2.54E-08	_	-
50	_	_	7.53E-09	4.53E-09	_	-

 $c=-2,\ \rho=0.5,$ degree of freedom is 10, and the total number of simulation is 25000.

Averaged CPU time: 4.39E-02, 1.27E-01, 2.39E-01, respectively.

Credit Risk Modeling: Structural Form Approach

Multi-Names Dynamics: for $1 \le i \le n$

$$dS_{it} = \mu_i S_{it} dt + \sigma_i S_{it} dW_{it},$$

$$d \langle W_{it}, W_{jt} \rangle = \rho_{ij} dt.$$

Each default time τ_i for the i^{th} name is defined as $\tau_i = \inf\{t \geq 0 : S_{it} \leq B_i\}$, where B_i denotes the i^{th} debt level.

The i^{th} default event is defined as $\{\tau_i \leq T\}$.

Joint Default Probability: First Passage Time Problem in High Dim.

Q: How to compute $JDP = I\!\!E \left\{ \Pi_{i=1}^n \mathbf{I}(\tau_i \leq T) \right\}$ under structural-form models? Explicit Formulas exist for 1-name case (Black and Cox '76) and 2-name case (Zhou '01).

Note that Carmona, Fouque, and Vestal ('09) dealed with a similar problem by means of Interacting Particle Systems.

Multi-Dimensional Girsanov Theorem

Given the Radon-Nikodym derivative

$$\frac{dP}{d\tilde{P}} = Q_T^h = e^{\left(\int_0^T h(s, S_s) \cdot d\tilde{W}_s - \frac{1}{2} \int_0^T ||h(s, S_s)||^2 ds\right)},$$

 $\tilde{W}_t = W_t + \int_0^t h(s, S_s) ds$ is a vector of Brownian motions under $\tilde{I}P$. Thus

$$DP = \tilde{E} \left\{ \prod_{i=1}^{n} \mathbf{I}(\tau_i \leq T) Q_T^h \right\}.$$

Monte Carlo Simulations: Importance Sampling

An importance sampling method is developed to satisfy

$$\tilde{E}\left\{S_{iT}|\mathcal{F}_{0}\right\} = B_{i}, i = 1, \cdots, n.$$

The new measure is characterized by solving the linear system $\sum_{j=1}^{i} \rho_{ij} h_j = \frac{\mu_i}{\sigma_i} - \frac{\ln B_i/S_{i0}}{\sigma_i T}$ so that by Girsanov Theorem

$$JDP = \tilde{E} \{ \prod_{i=1}^{n} \mathbf{I}(\tau_i \leq T) Q_T \}.$$

Single Name Default Probability

B	BMC	Exact Sol	Importance Sampling
50	0.0886 (0.0028)	0.0945	0.0890 (0.0016)
20	0 (0)	$7.7 * 10^{-5}$	$7.2*10^{-5}(2.3*10^{-6})$
1	0 (0)	$1.3*10^{-30}$	$1.8 * 10^{-30} (3.4 * 10^{-31})$

The number of simulations is 10^4 and the Euler discretization takes time step size T/400, where T is one year.

Other parameters are $S_0 = 100, \mu = 0.05$ and $\sigma = 0.4$. Standard errors are shown in parenthesis.

Asymptotic Optimality Efficient Importance Sampling

Assume $\ln (B_i/S_{i0}) = \frac{-1}{\varepsilon}$ for each $1 \le i \le N$. Denote by P_{ε} JDP and $M_{2\varepsilon}$ the second moment under a new measure:

$$P_{\varepsilon} = \mathbb{E} \left[\prod_{i=1}^{N} \mathbf{I} \left(\inf_{0 \le t \le T} S_{it} \le B_{i} \right) \right]$$

$$M_{2\varepsilon} = \mathbb{E} \left[\prod_{i=1}^{N} \mathbf{I} \left(\inf_{0 < t < T} S_{it} \le B_{i} \right) Q_{T} \right]$$

Theorem: By $M_{2\varepsilon} \approx (P_{\varepsilon})^2$ for small ε (spatial scale) we observe the optimality of chosen measure.

Proof: by Freidlin-Wentzellthm or a PDE argument.

Tail Probability Estimation : the first passage time problem *

	Basic MC		Importance Sampling	
Names	Mean	SE	Mean	SE
2	1.1E-03	3.31E-04	1.04E-03	2.83E-05
5	-	-	6.36E-06	3.72E-07
10	-	-	2.90E-07	2.66E-08
15	-	-	9.45E-09	1.16E-09
20	-	-	1.15E-09	1.98E-10
25	-	-	2.06E-10	3.84E-11
30	-	-	6.76E-11	2.36E-11
35	-	-	1.35E-11	2.89E-12
40	-	-	6.59E-12	1.58E-12
45	-	-	3.25E-12	1.08E-12
50	-	-	6.76E-13	2.26E-13

Parameters are $S_0=100, \mu=0.05, \ \sigma=0.3, \ \rho=0.3, \ \text{and}$ B=50.

*H. (2010)

Loss Density Function: 25 Names Diffusion Model

Note: Consider both survival and default probabilities.

Applications: Pricing CDOs, Risk Management of credit portfolios, etc.

Loss Density Function: 25 Names Jump Diffusion Model

Use the compound poisson jump as a common factor.

But optimal efficiency can not be obtained.

A Modification: Stochastic Correlation*

$$\begin{cases} dS_t^1 = rS_t^1 dt + \sigma_1 S_t^1 dW_t^1 \\ dS_t^2 = rS_t^2 dt + \sigma_2 S_t^2 (\rho(Y_t) dW_t^1 + \sqrt{1 - \rho^2(Y_t)} dW_t^2) \\ dY_t = \frac{1}{\varepsilon} (m - Y_t) dt + \frac{\sqrt{2}\beta}{\sqrt{\varepsilon}} dZ_t \text{ (Scaling in Time)} \end{cases}$$

Joint default probability

$$P^{\varepsilon}(t, x_1, x_2, y) := \mathbb{E}_{x_1, x_2, y} \left\{ \prod_{i=1}^{2} \mathbf{I}(\min_{t \le u \le T} S_u^i \le B_i) \right\}$$

*Hull, Presescu, White (2005)

Full Expansion of P^{ε}

Theorem

$$P^{\varepsilon}(t, x_1, x_2, y) = \sum_{i=0}^{\infty} \varepsilon^i P_i(t, x_1, x_2, y),$$

where P_i 's can be obtained recursively by solving a seq. of Poisson eqns.

Proof: by means of Singular Perturbation Techniques.

Accuracy results are ensured given smoothness of terminal condition.

Leading Order Term

 $P_0(t, x_1, x_2)$ solves the **homogenized** PDE (*y*-independent).

$$\left(\mathcal{L}_{1,0} + \overline{\rho} \,\mathcal{L}_{1,1}\right) \, P_0(t, x_1, x_2) = 0$$

 $\bar{\rho} = < \rho(y) >$, average taken wrt the **invartiant measure** of Y.

Differential operators are

$$\mathcal{L}_{1,0} = \frac{\partial}{\partial t} + \sum_{i=1}^{2} \frac{\sigma_i^2 x_i^2}{2} \frac{\partial^2}{\partial x_i^2} + \sum_{i=1}^{2} \mu_i x_i \frac{\partial}{\partial x_i}$$

$$\mathcal{L}_{1,1} = \sigma_1 \sigma_2 x_1 x_2 \frac{\partial^2}{\partial x_1 \partial x_2}.$$

Other Terms

$$P_{n+1}(t, x_1, x_2, y) = \sum_{i>0, i>1}^{i+j=n+1} \varphi_{i,j}^{(n+1)}(y) \mathcal{L}_{1,0}^i \mathcal{L}_{1,1}^j P_n$$

where a seq. of Poisson eqns to be solved:

$$\mathcal{L}_{0} \varphi_{i+1,j}^{(n+1)}(y) = \left(\varphi_{i,j}^{(n)}(y) - \langle \varphi_{i,j}^{(n)}(y) \rangle\right)$$

$$\mathcal{L}_{0} \varphi_{i,j+1}^{(n+1)}(y) = \left(\rho(y) \varphi_{i,j}^{(n)}(y) - \langle \rho \varphi_{i,j}^{(n)} \rangle\right),$$

where
$$\mathcal{L}_0 = \beta^2 \frac{\partial^2}{\partial y^2} + (m - y) \frac{\partial}{\partial y}$$
.

Stochastic Correlation I

$\alpha = \frac{1}{\varepsilon}$	ВМС	Importance Sampling
0.1	$0.0037(6*10^{-4})$	$0.0032(1*10^{-4})$
1	$0.0074(9*10^{-4})$	$0.0065(2*10^{-4})$
10	$0.0112(1*10^{-3})$	$0.0116(4*10^{-4})$
50	$0.0163(1*10^{-3})$	$0.0137(5*10^{-4})$
100	$0.016(1*10^{-3})$	$0.0132(4*10^{-4})$

Parameters are
$$S_{10} = S_{20} = 100, B_1 = 50, B_2 = 40, m = \pi/4, \nu = 0.5, \rho(y) = |sin(y)|.$$

Using the homogenized term in IS, note the effect of correlation.

Stochastic Correlation II

$\alpha = \frac{1}{\varepsilon}$	ВМС	Importance Sampling
0.1	0(0)	$9.1*10^{-7}(7*10^{-8})$
1	0(0)	$7.5 * 10^{-6} (6 * 10^{-7})$
10	0(0)	$2.4 * 10^{-5} (2 * 10^{-6})$
50	$1*10^{-4}(1*10^{-4})$	$2.9 * 10^{-5} (3 * 10^{-6})$
100	$1*10^{-4}(1*10^{-4})$	$2.7 * 10^{-5} (2 * 10^{-6})$

Parameters are $S_{10} = S_{20} = 100, B_1 = 30, B_2 = 20, m = \pi/4, \nu = 0.5.$

Note the effect of correlation.

Conclusions

- Simple yet efficient importance sampling methods are proposed, justified by large deviation theory.
- Full expansion of joint default probability under stochastic correlation by singular perturbation.
- Of course all these ideas can be applied to option pricing, complex model calibration, etc.

Acknowledgments

S.-J. Sheu(Academia Sinica), N.-R. Shieh(NTU),
 Y.L. Chen (NTHU), Doug Vestal(UBS,
 US).

Thank You