Pointwise Approximation of Stochastic Heat Equations with Additive Noise

Daniel Henkel

TU Darmstadt
Partially supported by the DFG
Contents

The Equation

The Computational Problem

Results

Summary and Outlook
Strong Approximation of SPDEs

- **Grecksch, Kloeden (1996), Gyöngy, Nualart (1997) and ...**: Upper bounds for error of algorithms based on uniform discretization in space and time.

Stochastic Heat Equation with Additive Noise

\[dX(t) = \Delta X(t) \, dt + B(t) \, dW(t), \quad t \in (0, T], \]
\[X(0) = 0, \]

with Dirichlet boundary conditions
Stochastic Heat Equation with Additive Noise

\[dX(t) = \Delta X(t) \, dt + B(t) \, dW(t), \quad t \in (0, T], \]
\[X(0) = 0, \]

with Dirichlet boundary conditions and

\[W(t) = \sum_{i \in \mathbb{N}^d} |i|^{-\frac{\gamma}{2}} \cdot \beta_i(t) \cdot h_i \]

Brownian motion in \(H = L_2((0,1)^d) \) in which

\[(\beta_i) \text{ independent standard one-dimensional Brownian motions}, \]
\[h_i(u) = 2^{\frac{d}{2}} \prod_{k=1}^{d} \sin(i_k \pi u_k) \text{ eigenfunction of } \Delta \text{ for } i \in \mathbb{N}^d, \]
Stochastic Heat Equation with Additive Noise

\[dX(t) = \Delta X(t) \, dt + B(t) \, dW(t), \quad t \in (0, T], \]
\[X(0) = 0, \]

with Dirichlet boundary conditions and

- \(W(t) = \sum_{i \in \mathbb{N}^d} |i|^{-\frac{\gamma}{2}} \cdot \beta_i(t) \cdot h_i \)
 Brownian motion in \(H = L_2((0, 1)^d) \) in which
 - \((\beta_i)\) independent standard one-dimensional Brownian motions,
 - \(h_i(u) = 2^{\frac{d}{2}} \prod_{k=1}^{d} \sin(i_k \pi u_k) \) eigenfunction of \(\Delta \) for \(i \in \mathbb{N}^d \),
- \(B \) operator-valued mapping.

Case 1 (TC(\(\gamma\))) \(\gamma > d\).

Case 2 (ID) \(\gamma = 0\) and \(d = 1\).
Computational Problem

Task
Approximate $X(T)$ based on evaluations of finitely many scalar Brownian motions β_i’s at a finite number of points.
Computational Problem

Task
Approximate $X(T)$ based on evaluations of finitely many scalar Brownian motions β_i's at a finite number of points.

Error and cost of any approximation $\hat{X}(T)$

$$e\left(\hat{X}(T)\right) = \left(\mathbb{E}\|X(T) - \hat{X}(T)\|_H^2\right)^{1/2},$$
$$\text{cost}\left(\hat{X}(T)\right) = \text{total number of evaluations of the } \beta_i \text{'s.}$$
Computational Problem

Task
Approximate $X(T)$ based on evaluations of finitely many scalar Brownian motions β_i’s at a finite number of points.

Error and cost of any approximation $\hat{X}(T)$

$$e\left(\hat{X}(T)\right) = \left(\mathbb{E}\|X(T) - \hat{X}(T)\|_H^2\right)^{1/2},$$
$$\text{cost}\left(\hat{X}(T)\right) = \text{total number of evaluations of the } \beta_i \text{'s.}$$

Goal
Approximation with optimal relation between error and cost.
Classes of Algorithms and Minimal Errors

Class \mathcal{X}_{uni} of algorithms with \textbf{uniform} time discretization:

- choose finite set $\mathcal{I} \subset \mathbb{N}^d$: only evaluate β_i with $i \in \mathcal{I}$.
- choose $n \in \mathbb{N}$: number of evaluations for β_i with $i \in \mathcal{I}$.
- use nodes $t_k = \frac{k}{n} T$, $k = 1, \ldots, n$, for β_i with $i \in \mathcal{I}$.
- choose $\phi : \mathbb{R}^N \rightarrow H$ measurable with $N = |\mathcal{I}| \cdot n$.
Classes of Algorithms and Minimal Errors

Class \mathcal{X}_{uni} of algorithms with **uniform** time discretization:

- choose finite set $\mathcal{I} \subset \mathbb{N}^d$: only evaluate β_i with $i \in \mathcal{I}$.
- choose $n \in \mathbb{N}$: number of evaluations for β_i with $i \in \mathcal{I}$.
- use nodes $t_k = \frac{k}{n} T$, $k = 1, \ldots, n$, for β_i with $i \in \mathcal{I}$.
- choose $\phi : \mathbb{R}^N \to H$ measurable with $N = |\mathcal{I}| \cdot n$.

Approximation:

$$\hat{X}(T) = \phi(\beta_{i_1}(t_1), \ldots, \beta_{i_1}(t_n), \ldots, \beta_{i_\ell}(t_1), \ldots, \beta_{i_\ell}(t_n))$$

for $\mathcal{I} = \{i_1, \ldots, i_\ell\}$.

Clearly

$$\text{cost} \left(\hat{X}(T) \right) = N.$$
Classes of Algorithms and Minimal Errors

Class \mathcal{X} of algorithms with **arbitrary** time discretization:

- choose finite set $\mathcal{I} \subset \mathbb{N}^d$: only evaluate β_i with $i \in \mathcal{I}$.
 - choose $n_i \in \mathbb{N}$: number of evaluations for β_i with $i \in \mathcal{I}$.
 - choose nodes $0 < t_{1,i} < \ldots < t_{n_i,i} \leq T$ for β_i with $i \in \mathcal{I}$.
- choose $\phi : \mathbb{R}^N \rightarrow H$ measurable with $N = \sum_{i \in \mathcal{I}} n_i$.
Classes of Algorithms and Minimal Errors

Class \mathcal{X} of algorithms with \textbf{arbitrary} time discretization:
- choose finite set $\mathcal{I} \subset \mathbb{N}^d$: only evaluate β_i with $i \in \mathcal{I}$.
 - choose $n_i \in \mathbb{N}$: number of evaluations for β_i with $i \in \mathcal{I}$.
 - choose nodes $0 < t_{1,i} < \ldots < t_{n_i,i} \leq T$ for β_i with $i \in \mathcal{I}$.
- choose $\phi : \mathbb{R}^N \rightarrow H$ measurable with $N = \sum_{i \in \mathcal{I}} n_i$.

Approximation:

$$\hat{\mathcal{X}}(T) = \phi(\beta_{i_1}(t_{1,i_1}), \ldots, \beta_{i_1}(t_{n_{i_1},i_1}), \ldots, \beta_{i_\ell}(t_{1,i_\ell}), \ldots, \beta_{i_\ell}(t_{n_{i_\ell},i_\ell}))$$

for $\mathcal{I} = \{i_1, \ldots, i_\ell\}$.

Clearly

$$\text{cost} \left(\hat{\mathcal{X}}(T) \right) = N.$$
Classes of Algorithms and Minimal Errors

N-th minimal errors

\[
e_{\text{uni}}(N) = \inf \left\{ e(\hat{X}(T)) : \hat{X}(T) \in \mathcal{X}_{\text{uni}} \text{ and cost } (\hat{X}(T)) \leq N \right\},
\]

\[
e(N) = \inf \left\{ e(\hat{X}(T)) : \hat{X}(T) \in \mathcal{X} \text{ and cost } (\hat{X}(T)) \leq N \right\}.
\]

Clearly

\[
e(N) \leq e_{\text{uni}}(N).
\]
Classes of Algorithms and Minimal Errors

N-th minimal errors

\[
e_{\text{uni}}(N) = \inf \left\{ e\left(\hat{X}(T)\right) : \hat{X}(T) \in \mathcal{X}_{\text{uni}} \text{ and cost } \left(\hat{X}(T)\right) \leq N \right\},
\]

\[
e(N) = \inf \left\{ e\left(\hat{X}(T)\right) : \hat{X}(T) \in \mathcal{X} \text{ and cost } \left(\hat{X}(T)\right) \leq N \right\}.
\]

Clearly

\[
e(N) \leq e_{\text{uni}}(N).
\]

Questions:

- Rate of convergence of $e(N)$ and $e_{\text{uni}}(N)$?
- Superiority of \mathcal{X} over \mathcal{X}_{uni}?
- Construction of algorithms $\hat{X}_N(T) \in \mathcal{X}$ with $\text{cost}\left(\hat{X}_N(T)\right) \leq N$ and $e\left(\hat{X}_N(T)\right) \simeq e(N)$. Likewise for \mathcal{X}_{uni}.
Results for Equations with Additive Noise

Assumption (A(α)): Put $B_{i,j}(t) = \langle B(t)h_i, h_j \rangle$.

- For $d = 1$ and $\alpha > 1$ assume

\[
\sup_{t \in [0, T]} \left((B_{i,j}(t))^2 + (B'_{i,j}(t))^2 \right) \leq \frac{1}{|i - j|^{\alpha + 1}} \tag{1}
\]

and

\[
\inf_{t \in [0, T]} (B_{i,i}(t))^2 > 0. \tag{2}
\]
Assumption (A(α)): Put $B_{i,j}(t) = \langle B(t)h_i, h_j \rangle$.

- For $d = 1$ and $\alpha > 1$ assume

 $$
 \sup_{t \in [0,T]} \left((B_{i,j}(t))^2 + (B'_{i,j}(t))^2 \right) \leq \frac{1}{|i - j|^\alpha + 1} \quad (1)
 $$

 and

 $$
 \inf_{t \in [0,T]} (B_{i,i}(t))^2 > 0. \quad (2)
 $$

Example: If $\alpha = 2$, (1) holds for multiplication operators $B(t)$, i.e.

$$
(B(t)h)(u) = G(t, u) \cdot h(u)
$$

with $G \in C^{(1,1)}([0, T] \times [0, 1])$.
Assumption (A(\(\alpha\))): \(B_{i,j}(t) = \langle B(t)h_i, h_j \rangle\).

- For \(d = 1\) and \(\alpha > 1\) assume
 \[
 \sup_{t \in [0,T]} \left((B_{i,j}(t))^2 + (B'_{i,j}(t))^2 \right) \leq \frac{1}{|i-j|^{\alpha+1}} \tag{1}
 \]
 and
 \[
 \inf_{t \in [0,T]} (B_{i,i}(t))^2 > 0. \tag{2}
 \]

- For \(d \geq 2\) and \(\alpha > d\) assume
 \[
 \sup_{t \in [0,T]} \left((B_{i,j}(t))^2 + (B'_{i,j}(t))^2 \right) \leq \prod_{k=1}^{d} \frac{1}{|i_k-j_k|^{\alpha+1}} \tag{3}
 \]
 and
 \[
 \inf_{t \in [0,T]} (B_{i,i}(t))^2 > 0. \tag{4}
 \]
Results for Equations with Additive Noise

Theorem Henkel (2009)
Assume (ID) and (A(\(\alpha\))). Then

\[
N^{-1/6} \lesssim e_{\text{uni}}(N) \preceq \begin{cases}
N^{-(\alpha-1)/6}, & \text{if } 1 < \alpha < 2, \\
N^{-1/6}, & \text{if } 2 \leq \alpha < \infty,
\end{cases}
\]

and

\[
N^{-1/2} \lesssim e(N) \preceq \begin{cases}
N^{-(\alpha-1)/4}, & \text{if } 1 < \alpha < 2, \\
N^{-1/4}, & \text{if } 2 \leq \alpha < \infty.
\end{cases}
\]
Results for Equations with Additive Noise

Theorem Henkel (2009)
Assume (ID) and (A(\(\alpha\))). Then

\[N^{-1/6} \preceq e_{\text{uni}}(N) \preceq \begin{cases}
N^{-(\alpha-1)/6}, & \text{if } 1 < \alpha < 2, \\
N^{-1/6}, & \text{if } 2 \leq \alpha < \infty,
\end{cases} \]

and

\[N^{-1/2} \preceq e(N) \preceq \begin{cases}
N^{-(\alpha-1)/4}, & \text{if } 1 < \alpha < 2, \\
N^{-1/4}, & \text{if } 2 \leq \alpha < \infty.
\end{cases} \]

Remarks

- Suboptimality of \(X_{\text{uni}}\) (at least), if \(\alpha > \frac{5}{3}\).
- Limiting case \(\alpha \to \infty\), i.e. \(B(t) = \text{id}\):

\[e_{\text{uni}}(N) \preceq N^{-1/6} \]

and

\[e(N) \preceq N^{-1/2}, \]

Results for Equations with Additive Noise

Theorem Henkel (2010)
Assume (TC(\(\gamma\))) and (A(\(\alpha\))). Let \(\epsilon > 0\). Then for \(\gamma > d(d + 2)\)

\[
N^{-\frac{2}{d+2}} \leq e_{uni}(N) \leq \left\{ \begin{array}{ll}
N^{-\frac{\gamma-(d(d+2))}{d(d+2)}} + \epsilon, & \text{if } \gamma < d(d + 4), \\
N^{-\frac{2}{d+2}} + \epsilon, & \text{if } \gamma \geq d(d + 4),
\end{array} \right.
\]

and

\[
N^{-1} \leq e(N) \leq N^{-\frac{d+2}{4d}} + \epsilon, \quad \text{if } \gamma \leq \alpha \text{ and } d \geq 3.
\]
Results for Equations with Additive Noise

Theorem Henkel (2010)
Assume (TC(\(\gamma\))) and (A(\(\alpha\))). Let \(\epsilon > 0\). Then for \(\gamma > d(d + 2)\)

\[
N^{-\frac{2}{d+2}} \leq e_{uni}(N) \leq \begin{cases}
N^{-\frac{\gamma-(d(d+2))}{d(d+2)}} + \epsilon, & \text{if } \gamma < d(d + 4), \\
N^{-\frac{2}{d+2}} + \epsilon, & \text{if } \gamma \geq d(d + 4),
\end{cases}
\]

and

\[
N^{-1} \leq e(N) \leq N^{-\frac{d+2}{4d}} + \epsilon, \quad \text{if } \gamma \leq \alpha \text{ and } d \geq 3.
\]
Results for Equations with Additive Noise

Theorem Henkel (2010)
Assume (TC(\(\gamma\))) and (A(\(\alpha\))). Let \(\epsilon > 0\). Then for \(\gamma > d(d + 2)\)

\[
N^{-\frac{2}{d+2}} \leq e_{uni}(N) \leq \begin{cases}
N^{-\frac{\gamma-(d(d+2))}{d(d+2)}} + \epsilon, & \text{if } \gamma < d(d + 4), \\
N^{-\frac{2}{d+2}} + \epsilon, & \text{if } \gamma \geq d(d + 4),
\end{cases}
\]

and

\[
N^{-1} \leq e(N) \leq N^{-\frac{d+2}{4d}} + \epsilon, \quad \text{if } \gamma \leq \alpha \text{ and } d \geq 3.
\]

Remarks

- Suboptimality of \(X_{uni}\) (at least), if \(d \geq 3\) and \(\alpha \geq \gamma > d(d + 2)\).
- Limiting case \(\alpha \to \infty\), i.e. \(B(t) = id\):

\[
e(N) \asymp \begin{cases}
N^{-\frac{\gamma+2-d}{2d}}, & \text{if } \gamma < 3d - 2, \\
N^{-1}, & \text{if } \gamma > 3d - 2.
\end{cases}
\]

Remark Upper bounds for $e(N)$

- Time discretizations are quantiles of the density
 $t \mapsto \exp(-\frac{\mu_j}{3}(T - t))$, i.e.
 \[
 \int_{0}^{s_{k,j}} \exp\left(-\frac{\mu_j}{3}(T - t)\right) \, dt = \frac{k}{\nu_j} \int_{0}^{T} \exp\left(-\frac{\mu_j}{3}(T - t)\right) \, dt
 \]
 for $j \in J \subset \mathbb{N}^d$, $\mu_j = \pi^2|j|^2$, $\nu_j \in \mathbb{N}$, $k = 1, \ldots, \nu_j$ and
 $\{t_{1,i}, \ldots, t_{n,i}\} = \bigcup_{j \in J} \{s_{1,j}, \ldots, s_{\nu_j,j}\}$ for every β_i.

- Drift-implicit Euler-Maruyama scheme.
Summary

For additive noise with decay condition \(A(\alpha) \) the minimal error \(e(N) \) is superior to \(e_{\text{uni}}(N) \), if

\[
\text{(ID)} \quad \alpha > \frac{5}{3}.
\]

\[
\text{(TC}(\gamma)) \quad \alpha \geq \gamma > d(d + 2) \text{ and } d \geq 3.
\]
Summary and Outlook

Summary

For additive noise with decay condition \((A(\alpha))\) the minimal error \(e(N)\) is superior to \(e_{\text{uni}}(N)\), if

\[(\text{ID}) \quad \alpha > \frac{5}{3}.\]

\[(\text{TC}(\gamma)) \quad \alpha \geq \gamma > d(d + 2) \text{ and } d \geq 3.\]

Outlook

- The cases \(\gamma \leq d(d + 2) \text{ and } d < 3.\)

- Sharp bounds for \(e(N)\).

- Multiplicative noise.