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General Problem.
Let X = X(t) , 0 ≤ t ≤ 1 , be a random process attaining values in
some Banach space E, in most cases E = L2[0, 1] or C[0, 1].
For ε > 0 consider the small deviation probabilities on the log−level,

φ(ε) = φX(ε) := − log P (‖X‖E ≤ ε)

and determine the asymptotic behaviour as ε→ 0 .
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Let X = X(t) , 0 ≤ t ≤ 1 , be a random process attaining values in
some Banach space E, in most cases E = L2[0, 1] or C[0, 1].
For ε > 0 consider the small deviation probabilities on the log−level,

φ(ε) = φX(ε) := − log P (‖X‖E ≤ ε)

and determine the asymptotic behaviour as ε→ 0 .

Applications in probability and analysis.
- law of the iterated logarithm of Chung type
- strong limit laws in statistics
- quantization (approximation) of stochastic processes
- metric entropy of linear operators
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K(t, s) := EXα,β(t)Xα,β(s) =
22β+1(ts)α
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.

Special problem.
(posed at the Workshop in Palo Alto, December 2008)
Find the small deviation rates of the processes Xα,β w.r.t. the
– L2 norm, if α > 0 and −1/2 < β < α
– sup norm, if α > β + 1/2 > 0 .

Remark. The conditions on α, β are best possible to ensure that the
sample paths of the process Xα,β(t) are almost surely in L2[0, 1],
respectively in C[0, 1].

The main tool for answering this question is the close relation to
metric entropy.
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For a subset K of a metric space (E, d) we define its
entropy numbers and covering numbers

εn(K) = inf{ε > 0 : K can be covered by n balls of radius ε}
N(K, ε) = min{n ∈ N : K can be covered by n balls of radius ε}

and Kolmogorov’s ε−entropy by H(K, ε) = log2N(K, ε) .
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For a subset K of a metric space (E, d) we define its
entropy numbers and covering numbers

εn(K) = inf{ε > 0 : K can be covered by n balls of radius ε}
N(K, ε) = min{n ∈ N : K can be covered by n balls of radius ε}

and Kolmogorov’s ε−entropy by H(K, ε) = log2N(K, ε) .

The (dyadic) entropy numbers of an operator T : X → Y between
Banach spaces are defined as
en(T ) = ε2n−1(T (BX)) (BX = closed unit ball of X) .

Remark. A set K is relatively compact ⇐⇒ lim
n→∞

εn(K) = 0

An operator T is compact ⇐⇒ lim
n→∞

en(T ) = 0.

y The asymptotic behaviour of these quantities is a measure for the
”degree” of compactness of sets/operators.
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µ is uniquely determined by each of the following quantities:
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ia(x) dµ(x) , a ∈ E′

– covariance operator R : E′ → E, Ra :=
∫
E
xa(x) dµ(x)︸ ︷︷ ︸

Bochner integral

– RKHS Hµ , i.e. the completion of R(E′) w.r.t. the inner product

〈Ra,Rb〉µ =
∫
E
a(x)b(x) dµ(x) , a, b ∈ E′

y µ̂(a) = exp(−1
2〈Ra,Ra〉µ) = exp(−1

2‖S
′a‖2H)

for some operator S : H → E, where H is a Hilbert space.
y R = SS′, and S(BH) is dense in the unit ball Kµ of Hµ.

Consequently, both sets have the same ε−entropy
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Translation to processes. Let X be a Gaussian process that attains
values in E and is related to an operator S : H → E via

(*) Eeia(X) = exp(−1
2‖S

′a‖2) , a ∈ E′ .
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Theorem 1. Let α > 0 and −1/2 < β < α. Then

− log P
(∫ 1

0

Xα,β(t)
2 dt ≤ ε2

)
∼ (log 1/ε)3 as ε→ 0 .
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Proposition 2. For α > β > −1/2, the entropy numbers of the operator
S : L2[0,∞)→ L2[0, 1] given by (**) satisfy

− log en(S) ∼ 3
√
n as n→∞ .



From our previous considerations it is clear that Theorem 1 is a
consequence of the following

Proposition 2. For α > β > −1/2, the entropy numbers of the operator
S : L2[0,∞)→ L2[0, 1] given by (**) satisfy

− log en(S) ∼ 3
√
n as n→∞ .

Sketch of proof. The operator T := SS′ : L2[0, 1]→ L2[0, 1] is given by

(Tf)(t) = Γ(2β + 1)
∫ 1

0

(tx)α

(t+ x)2β+1
dt .

The singular numbers of T are known (Laptev 1974),

− log sn(T ) ≈ 2π
√

(α− β)n (strong equivalence ≈) ,

and from sn(T ) = sn(S)2 we get, with c = π
√
α− β ,

− log sn(S) ≈ c
√
n .
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Remark. The proof gives even the exact small deviation constant ,

lim
ε→0

− log P(‖Xα,β‖2 ≤ ε)
(log 1/ε)3

=
1

3(α− β)π2
.
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Theorem 3. Let α > β + 1/2 > 0. Then

− log P
(

sup
0≤t≤1

|Xα,β(t)| ≤ ε
)
∼ (log 1/ε)3 as ε→ 0 .

Using again the ”entropy connection”, it is enough to show

Proposition 4. Let α > β + 1/2 > 0, and let the operator
S : L2[0,∞)→ C[0, 1] be given by

(Sf)(t) = tα
∫ ∞

0
xβe−xtf(x) dx .

Then
− log en(S : L2[0,∞)→ C[0, 1]) ∼ n1/3 .
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It consists of all functions f ∈ C[0, 1] with finite norm
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The proof of the lower bound is less trivial. Starting point is the
observation that S maps L2[0,∞) even into a smaller space than C[0, 1],
namely the Hölder space Cλ[0, 1] where λ = min(α− β − 1/2, 1/2).
It consists of all functions f ∈ C[0, 1] with finite norm
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But how can we take advantage of this fact? The answer is given by the
following result, which might be of independent interest.
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∫
Iδ(t)

f(x) dx ,

over ”moving” intervals Iδ(t) = [t− δ, t+ δ] ∩ [0, 1] ,

for which we have the simple norm estimates
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Open question.

lim
ε→0

− log P
(
sup0≤t≤1 |Xα,β(t)| ≤ ε

)
(log 1/ε)3

= ??
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