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Guassian random field generation (usually
on points {x.}r,—1 n), €.9. for solving a
PDE with random coefficients

Given a covariance kernel r(|Jx — y|), e.g.
r(Jz — y|) = o2elrul/A

We have a covariance matrix R for the field
on the discrete points (but there are other
ways of generating the field)

To generate points, we need to decompose
R into its‘square root”, R = AA'

This decomposition, and the subsequent
multiplications, can be very expensive, e.g.
Cholesky decomposition, O(N3)



e Consider a regular grid of N points on [0, 1]

e R will have a Toeplitz structure, i.e. con-
stant on the diagonals

- r(0) r(1/N) r(2/N) r(3/N)
r(1/N) r(0) r(1/N) r(2/N)
T(Q/N) r(L/N) r(0) r(1/N)

Note that R can be characterised by its first
row r, where r, = r(k/N)



e We can generalise to N¥ points on [0, 1]°

e R will have a block-Toeplitz with Toeplitz
blocks structure, i.e.

Rop R1 Ry R3
R1 Rop Ri1 R
Ry Ry Rp Ry

Where each of the R, is a square Toeplitz
matrix



e Any Toeplitz matrix has a circulant embed-
ding (where each row is the previous shifted
one place). Consider R of size N x N em-
bedded in our circulant C' of size d x d:

C —

R U
Ul v

e.g. minimal embedding

¢ ={ro,T1, -y TN—-2, TN—1, TN—2y .-, T2, T1}

(again a circulant can be charaterised by its first
row)

e Eigenvectors of C are the columns of the
DFT matrix, and C can be decomposed as
C =FrIAF

e Can use the FFT for finding eigenvalues A
and subsequent multiplications z = FAL/2g.
Cheap! O(dlogd).



e But how does that help us?

dy

exp(%zTR_1 )
E = d
(9() = [ 9 Tt
[ oy ) exp(3y’ C1y)

e SO expectation stays the same with extra
variables and extended covariance matrix

o For QMC integration we can take this to
the unit cube, with ¢ = §ST

= [ 149(5®a(@)de

(P4(x) is the d-dimensional inverse normal)



e But circulant C is not guaranteed to be
positive definite.

e Can solve by padding:

C — {T07 ey 'N—-1,P1,P2y -y Pky---» P1, TN-1, "'7Tl}

e \We can generate the padding in a number
of ways:

— By extending using r(x) itself.

— By extending using maximum entropy
methods if we only have the covariance
matrix.



e If we have r(x), can simply go past 1 and
reflect to obtain c(x).

c(:c)—{r(x) 0 <o < M
T(Q—N]d]_k — ) _N]—\|[—k <x< 2—N]'\|7_k

e Thene, =c(k/N) fork=1,...2(N+k)—1

N -1 (N—|—k—1

N

() N )
N4+Ek—-1 1

) T( )77T(N)}

c = {r(0),...,7
r(

N-|-
N




e Does this guarantee positive definiteness?

Theorem 1 (Dietrich and Newsam, '97) Let

r(x) be a non-negative definite and symmetric
function, with

Sy(w)=1r(0)+2 i r(k/N) cos(2rkw)
k=1

strictly positive. Then for every N there exists
a positive integer M such that the vector r
with entries ri, = r(k/N), k = 1,...,M has a
non-negative definite minimal embedding.

e From the proof can show for r(x) = e~ lzl/A

M > O(N log 2N) will ensure a non-negative
definite embedding.



e Or, we also have

Theorem 2 Ifr = {rg,...,rny_1} iS @ con-
vex, decreasing and non-negative sequence,
then r has a non-negative definite minimal
embedding.

e [ his holds for our typical choice of covari-
ance r(|z — y|) = o2e~12—yl/A,

e Doesn’'t help for dimensions greater than
1.



e Finally, we can construct the padding using
maximum entropy extensions, and through
an algorithm of Dembo et al. '94, we have
that.

Theorem 3 Ifr = {rqg,...,rny_1} IS pOsitive

definite, then R has a circulant embedding
of size 2M x2M where M > O(rk(R)Y/2N5/4).

(k(R) is the condition number of the matrix R)

e Again a 1-dimensional result.
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Work to be done

e Generalise these analytic results to s di-
mensions

e Find general relationships between eigen-
pairs of R and C.
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