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• Guassian random field generation (usually

on points {xk}k=1...N), e.g. for solving a

PDE with random coefficients

• Given a covariance kernel r(|x − y|), e.g.

r(|x− y|) = σ2e−|x−y|/λ

• We have a covariance matrix R for the field

on the discrete points (but there are other

ways of generating the field)

• To generate points, we need to decompose

R into its“square root”, R = AAT

• This decomposition, and the subsequent

multiplications, can be very expensive, e.g.

Cholesky decomposition, O(N3)
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• Consider a regular grid of N points on [0,1]

• R will have a Toeplitz structure, i.e. con-

stant on the diagonals

R =


r(0) r(1/N) r(2/N) r(3/N) · · ·

r(1/N) r(0) r(1/N) r(2/N)
r(2/N) r(1/N) r(0) r(1/N)

... . . .



Note that R can be characterised by its first

row rrr, where rrrk = r(k/N)
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• We can generalise to Ns points on [0,1]s

• R will have a block-Toeplitz with Toeplitz

blocks structure, i.e.

R =


R0 R1 R2 R3 · · ·
R1 R0 R1 R2
R2 R1 R0 R1
... . . .


Where each of the Rk is a square Toeplitz

matrix
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• Any Toeplitz matrix has a circulant embed-
ding (where each row is the previous shifted
one place). Consider R of size N ×N em-
bedded in our circulant C of size d× d:

C =

[
R U

UT V

]

e.g. minimal embedding

ccc = {r0, r1, ..., rN−2, rN−1, rN−2, ..., r2, r1}
(again a circulant can be charaterised by its first
row)

• Eigenvectors of C are the columns of the
DFT matrix, and C can be decomposed as
C = FTΛF

• Can use the FFT for finding eigenvalues Λ
and subsequent multiplications zzz = FΛ1/2xxx.
Cheap! O(d log d).
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• But how does that help us?

E(g(zzz)) =
∫
RN

g(zzz)
exp(1

2zzz
TR−1zzz)√

(2π)N(detR)1/2
dzzz

=
∫
Rd
g(yyy[1...N ])

exp(1
2yyy
TC−1yyy)√

(2π)N(detC)1/2
dyyy

• So expectation stays the same with extra

variables and extended covariance matrix

• For QMC integration we can take this to

the unit cube, with C = SST

=
∫

[0,1]d
g(SΦd(xxx))dxxx

(Φd(xxx) is the d-dimensional inverse normal)
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• But circulant C is not guaranteed to be

positive definite.

• Can solve by padding:

ccc = {r0, ..., rN−1, p1, p2, ..., pk, ..., p1, rN−1, ..., r1}

• We can generate the padding in a number

of ways:

– By extending using r(x) itself.

– By extending using maximum entropy

methods if we only have the covariance

matrix.
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• If we have r(x), can simply go past 1 and

reflect to obtain c(x).

c(x) =

{
r(x) 0 ≤ x < N+k

N
r(2N+k

N − x) N+k
N ≤ x < 2N+k

N

• Then ccck = c(k/N) for k = 1, ...,2(N+k)−1

ccc = {r(0), ..., r(
N − 1

N
), r(

N

N
), ..., r(

N + k − 1

N
),

r(
N + k

N
), r(

N + k − 1

N
), ..., r(

1

N
)}
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• Does this guarantee positive definiteness?

Theorem 1 (Dietrich and Newsam, ’97) Let

r(x) be a non-negative definite and symmetric

function, with

s̃N(ω) = r(0) + 2
∞∑
k=1

r(k/N) cos(2πkω)

strictly positive. Then for every N there exists

a positive integer M such that the vector rrr

with entries rrrk = r(k/N), k = 1, ...,M has a

non-negative definite minimal embedding.

• From the proof can show for r(x) = e−|x|/λ,

M > O(N log 2N) will ensure a non-negative

definite embedding.
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• Or, we also have

Theorem 2 If rrr = {r0, ..., rN−1} is a con-

vex, decreasing and non-negative sequence,

then rrr has a non-negative definite minimal

embedding.

• This holds for our typical choice of covari-

ance r(|x− y|) = σ2e−|x−y|/λ.

• Doesn’t help for dimensions greater than

1.
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• Finally, we can construct the padding using

maximum entropy extensions, and through

an algorithm of Dembo et al. ’94, we have

that.

Theorem 3 If rrr = {r0, ..., rN−1} is positive

definite, then R has a circulant embedding

of size 2M×2M where M ≥ O(κ(R)1/2N5/4).

(κ(R) is the condition number of the matrix R)

• Again a 1-dimensional result.
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Work to be done

• Generalise these analytic results to s di-

mensions

• Find general relationships between eigen-

pairs of R and C.
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