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MC vs. QMC methods

Monte Carlo (MC) methods are numerical methods based

on sampling with random or pseudorandom numbers. Their

typical convergence rate is O(N−1/2), where N is the sam-

ple size. Being stochastic methods, they allow statistical

error estimation.

Quasi-Monte Carlo (QMC) methods are deterministic ver-

sions of MC methods. They replace sequences of pseu-

dorandom numbers by low-discrepancy sequences. Their

typical convergence rate is O
(
N−1

)
up to logarithmic fac-

tors.



Hybrid sequences

An idea going back to Spanier (1995) is to combine the

advantages of MC and QMC methods, i.e., statistical error

estimation and faster convergence.

Such combined methods use hybrid sequences that are ob-

tained by “mixing” different types of sequences, i.e., certain

coordinates of the points stem from one type of sequence

and the remaining coordinates from another type.



Of greatest practical interest is the combination of low-

discrepancy sequences and sequences of pseudorandom num-

bers.

In view of the Koksma-Hlawka inequality, we need upper

bounds on the discrepancy of hybrid sequences. Previous

results by Ökten (1996), Ökten-Tuffin-Burago (2006), and

Gnewuch (2009) provide only probabilistic bounds on this

discrepancy. I describe the first deterministic bounds.



The basic sequences

Low-discrepancy sequences:

(i) Halton sequences yn = (φb1
(n), . . . , φbs(n))

(ii) Kronecker sequences yn = {nα}

Sequences of pseudorandom numbers:

(i) linear congruential sequences

(ii) nonlinear congruential sequences

(iii) explicit inversive sequences

(iv) digital inversive sequences



Deterministic discrepancy bounds

[0, 1)m m-dim. half-open unit cube (m ≥ 1 arbitrary),

λm m-dim. Lebesgue measure.

J subinterval of [0, 1)m, cJ characteristic function of J .

For x0,x1, . . . ,xN−1 ∈ [0, 1)m put

A(J ; N) :=

N−1∑
n=0

cJ(xn).

Discrepancy

DN = sup
J

∣∣∣∣A(J ; N)

N
− λm(J)

∣∣∣∣ .



We consider hybrid sequences obtained by “mixing” a low-

discrepancy sequence and a sequence of pseudorandom num-

bers (or vectors) from the two given lists. For many of the

possible combinations, we have nontrivial deterministic dis-

crepancy bounds. So far there are four papers on this topic

by the speaker, one of them joint with Winterhof, starting

from 2009.

In the following, we present a selection of the results.



Halton + nonlinear congruential

Let y0,y1, . . . be an s-dim. Halton sequence with pairwise

coprime bases b1, . . . , bs ≥ 2.

Let p ≥ 3 be a prime with gcd(bi, p) = 1 for 1 ≤ i ≤
s. Choose g1, . . . , gt ∈ Fp[X ] of distinct degrees with

2 ≤ deg(gj) < p for 1 ≤ j ≤ t. Then define the hybrid

sequence

xn =

(
yn,

g1(n)

p
, . . . ,

gt(n)

p

)
∈ [0, 1)s+t, n = 0, 1, . . . .

Let DN be the discrepancy of x0,x1, . . . ,xN−1.



Theorem 1.

DN = O

((
N−1Gp p1/2(log p)t+1

)1/(s+1)
)

for 1 ≤ N ≤ p, where Gp = max1≤j≤t deg(gj) and the

implied constant depends only on b1, . . . , bs, t.

Remark 1. Fix b1, . . . , bs, t. For each prime p ≥ 3,

choose Np ∈ N with Np ≤ p such that

lim
p→∞

Gp p1/2(log p)t+1

Np
= 0.

Then DNp
→ 0 as p →∞ by Theorem 1, so by Koksma-

Hlawka the corresponding hybrid MC method converges.



Kronecker + nonlinear congruential

Let α = (α1, . . . , αs) ∈ Rs of type 1, e.g., the αi are

algebraic numbers such that 1, α1, . . . , αs are lin. indep.

over Q.

For a prime p ≥ 5, choose g1, . . . , gt ∈ Fp[X ] of distinct

degrees with 3 ≤ deg(gj) < p for 1 ≤ j ≤ t. Then define

the hybrid sequence

xn =

(
{nα}, g1(n)

p
, . . . ,

gt(n)

p

)
∈ [0, 1)s+t, n = 0, 1, . . . .

Let DN be the discrepancy of x0,x1, . . . ,xN−1.



Theorem 2.

DN = O
(
N−1/2G

1/2
p p1/4(log p)1/2(log N)s+t

)
for 2 ≤ N ≤ p, where Gp = max1≤j≤t deg(gj) and the

implied constant depends only on α and t.

Remark 2. Fix α ∈ Rs of type 1 and t ∈ N. For each

prime p ≥ 5, choose Np ∈ N with Np ≤ p such that

lim
p→∞

Gp p1/2(log p)(log Np)
2(s+t)

Np
= 0.

Then DNp
→ 0 as p →∞ by Theorem 2, so by Koksma-

Hlawka the corresponding hybrid MC method converges.



Kronecker + explicit inversive

Let α ∈ Rs of type 1. For a prime p ≥ 5, choose

a1, . . . , at ∈ F∗p and d1, . . . , dt ∈ Fp such that d1/a1, . . .,

dt/at are distinct elements of Fp. For 1 ≤ j ≤ t and

n = 0, 1, . . ., put

e
(j)
n = (ajn + dj)

p−2 ∈ Fp.

Then define the hybrid sequence

xn =
(
{nα}, e

(1)
n

p
, . . . ,

e
(t)
n

p

)
∈ [0, 1)s+t, n = 0, 1, . . . .



Theorem 3. Let DN be the discrepancy of x0,x1, . . .,

xN−1. Then

DN = O
(
N−1/2p1/4(log p)1/2(log N)s+t

)
for 2 ≤ N ≤ p, where the implied constant depends only

on α and t.

Remarks 1 and 2 apply here in an analogous way.



Kronecker + digital inversive

Let Fq be the finite field of order q = pk, p prime, k ≥
2. Let γ0, γ1, . . . ∈ Fq be an inversive generator in the

sense of H.N.-Rivat (2008) with least period q + 1. For

an ordered basis {β1, . . . , βk} of Fq over Fp, we can write

γn =
∑k

l=1 cn,l βl with all cn,l ∈ Fp being unique. Then

a digital inversive sequence is defined by

zn =

k∑
l=1

cn,l p
−l ∈ [0, 1) for n = 0, 1, . . . .



Choose α ∈ Rs of type 1 and integers 0 ≤ i1 < i2 < · · · <
it ≤ q. Then define the hybrid sequence

xn = ({nα}, zn+i1, . . . , zn+it) ∈ [0, 1)s+t

for n = 0, 1, . . . .

Theorem 4. Let DN be the discrepancy of x0,x1, . . .,

xN−1. Then

DN = O
(
N−1/4q1/8(log q)t(log N)s

)
for 2 ≤ N ≤ q + 1, where the implied constant depends

only on α and t.



The tools

The discrepancy bounds are proved by applying a version

of the Erdös-Turán-Koksma inequality. In some cases the

classical ETK inequality suffices. In other cases, where one

constituent of the hybrid sequence is a digital sequence, a

new version of the ETK inequality has to be used.

The remaining steps require bounds for exponential sums

and (when Halton sequences are involved) counting argu-

ments and elementary number theory.


