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Computing integrals via MCMC
We are to compute

θ = π(f ) =

∫
X

f (x)π(dx),

where
X – state space,
π – probability distribution on X ,

Markov chain

X0, X1, . . . , Xn, . . . P(Xn ∈ ·) → π(·) (n →∞).

MCMC estimator

θ̂n = π̂n(f ) =
1
n

n−1∑
i=0

f (Xi) → θ (n →∞).
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Convergence of probability distributions:



Convergence of sample averages:



Accuracy bounds

Rate of convergence of probability distributions:

‖P(Xn ∈ ·)− π(·)‖ ≤ ?

– not considered here.

Rate of convergence of sample averages.

Mean square error:

√
MSE =

√
E (θ̂n − θ)2 ≤ ?

Confidence bounds:

P(|θ̂n − θ| > ε) ≤ ?
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Small set

Transition kernel:

P(x , A) = P(Xn ∈ A|Xn−1 = x).

ASSUMPTION
Stationary distribution. There exists a probability
distribution π on X such that πP = π and P is
π-irreducible.

Small set. There exist J ⊆ X with π(J) > 0,
a probability measure ν and β > 0 such that

P(x , ·) ≥ βI(x ∈ J)ν(·).
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Regeneration

(Nummelin 1978, Athreya and Ney 1978.)

The “residual” stochastic kernel:

Q(x , ·) =
P(x , ·)− βI(x ∈ J)ν(·)

1− βI(x ∈ J)
.

If Xn−1 6∈ J then draw Xn ∼ P(Xn−1, ·), no regeneration;
If Xn−1 ∈ J then

with probability 1− β draw Xn ∼ Q(Xn−1, ·), no
regeneration;
with probability β draw Xn ∼ ν(·), Regeneration.



Regeneration

Times of regeneration partition a trajectory into iid blocks:

X0, . . . , XT1−1︸ ︷︷ ︸
T1

, XT1 , . . . , XT2−1︸ ︷︷ ︸
T2−T1

, XT2 , . . . , XT3−1︸ ︷︷ ︸
T3−T2

, . . .

↑ ↑
R R

R = Regeneration

Block sums:

Bk (f ) =

Tk−1∑
i=Tk−1

f (Xi).

T = T1=d Tk − Tk−1 under Pν ,

B(f ) = B1(f )=d Bk (f ) under Pν ,

(ν is the regeneration distribution).
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Mean Square Error

The integral of interest and its MCMC estimator:

θ = π(f ) =
∫
X f (x)π(dx), θ̂n = 1

n
∑n−1

i=0 f (Xi).

THEOREM
Under Assumptions Stationary distribution and Small set,√

Eξ (θ̂n − θ)2 ≤ σas(f )√
n

(
1 +

C0

n

)
+

C1(f )
n

+
C2(f )

n
,

where f̄ = f − θ,

σ2
as(f ) :=

EνB(f̄ )2

EνT
, C0 := EπT =

EνT 2

2EνT
+

1
2
,

C1(f ) :=
√

EξB(f̄ )2,

C2(f ) :=
√

EξPnB(f̄ )2.



Mean Square Error

The integral of interest and its MCMC estimator:

θ = π(f ) =
∫
X f (x)π(dx), θ̂n = 1

n
∑n−1

i=0 f (Xi).

THEOREM
Under Assumptions Stationary distribution and Small set,√

Eξ (θ̂n − θ)2 ≤ σas(f )√
n

(
1 +

C0

n

)
+

C1(f )
n

+
C2(f )

n
,

where f̄ = f − θ,

σ2
as(f ) :=

EνB(f̄ )2

EνT
, C0 := EπT =

EνT 2

2EνT
+

1
2
,

C1(f ) :=
√

EξB(f̄ )2,

C2(f ) :=
√

EξPnB(f̄ )2.



Mean Square Error

Remark
In our theorem we have

Possibly unbounded function f ;
Nonasymptotic bound with the “correct leading term”:√

Eξ (θ̂n − θ)2 ≤ σas(f )√
n

(
1 +

C0

n

)
+

C1(f )
n

+
C2(f )

n
,

while √
Eξ (θ̂n − θ)2 ∼ σas(f )√

n
(n →∞).

and σ2
as(f ) is the “asymptotic variance” in the CLT:

√
n

σas(f )
(θ̂n − θ) →d N (0, 1) (n →∞).



Mean Square Error

Remark
In our theorem we have

Possibly unbounded function f ;
Nonasymptotic bound with the “correct leading term”:√

Eξ (θ̂n − θ)2 ≤ σas(f )√
n

(
1 +

C0

n

)
+

C1(f )
n

+
C2(f )

n
,

while √
Eξ (θ̂n − θ)2 ∼ σas(f )√

n
(n →∞).

and σ2
as(f ) is the “asymptotic variance” in the CLT:

√
n

σas(f )
(θ̂n − θ) →d N (0, 1) (n →∞).



Mean Square Error

Remark
In our theorem we have

Possibly unbounded function f ;
Nonasymptotic bound with the “correct leading term”:√

Eξ (θ̂n − θ)2 ≤ σas(f )√
n

(
1 +

C0

n

)
+

C1(f )
n

+
C2(f )

n
,

while √
Eξ (θ̂n − θ)2 ∼ σas(f )√

n
(n →∞).

and σ2
as(f ) is the “asymptotic variance” in the CLT:

√
n

σas(f )
(θ̂n − θ) →d N (0, 1) (n →∞).



Mean Square Error

Relation to previous work (nonasymptotic bounds on MSE of
MCMC):

WN, P.Pokarowski, Fixed precision MCMC Estimation by
Median of Products of Averages, J. Appl. Probab. 2009.
Discrete space.
D.Rudolf, Explicit error bounds for lazy reversible Markov chain
Monte Carlo, J. Complex. 2009. Bounds in terms of spectral
gap.
K.Łatuszyński, WN, Rigorous confidence bounds for MCMC
under a geometric drift condition, to appear in J. Complex.
Same problem, different method.
K.Łatuszyński, B.Miasojedow, WN, Nonasymptotic bounds on
the estimation error for regenerative MCMC algorithms,
submitted. A result on sequential estimator, which requires
identification of regeneration times.



Mean Square Error

Remark
Our present result concerns the standard scheme with
deterministic length n of simulation.
Our bound would not improve if we added a burn-in time at
the beginning of simulation. (Perhaps this is a
disadvantage?)



Proof
Look for the first regeneration past n:

R(n) = min{r : Tr > n}.

0, . . . , T1 − 1, T1, . . . . . . , TR(n)−1, . . . , n, . . . , TR(n) − 1, TR(n), . . .

↑ ↑ ↑ ↑
R R n R

Then express the error as follows:

θ̂n − θ =
1
n

n−1∑
i=0

f̄ (Xi) =
1
n

(O1 + Z −O2)

=
1
n

T1−1∑
i=0

f̄ (Xi) +

TR(n)−1∑
i=T1

f̄ (Xi)−
TR(n)−1∑

i=n

f̄ (Xi)

 ,

O1︷ ︸︸ ︷
0, . . . , T1 − 1, T1, . . . . . . , TR(n)−1, . . . ,

O2︷ ︸︸ ︷
n, . . . , TR(n) − 1, TR(n), . . .



Proof continued

The main term

Z =

TR(n)−1∑
i=T1

f̄ (Xi) =

R(n)∑
k=2

Bk (f̄ )

is marked in blue:

0, . . . , T1 − 1,

Z︷ ︸︸ ︷
T1, . . . , TR(n)−1, . . . , n, . . . , TR(n) − 1, TR(n), . . .

Z is a sum of a random number of iid summands and R(n) is
a stopping time. Therefore tools of sequential analysis apply:

Two identities of Abraham Wald.
Lorden’s theorem (1970, renewal theory).

The other two terms, O1 and O1 have to be bounded separately.



Drift condition – geometrically ergodic chains

Drift towards small set J.

ASSUMPTION
Drift. There exist a function V : X → [1,∞[, constants
λ < 1 and K < ∞ such that

PV 2(x) :=

∫
X

P(x , dy)V 2(y) ≤

{
λ2V 2(x) for x 6∈ J,

K 2 for x ∈ J.

Remark
Notation V 2, λ2, K 2 – to simplify further statements.



Explicit bounds under drift condition

Bounds on constants σ2
as(f ), C0, C1(f ), C2(f ).

Under Assumptions SmallSet and Drift, if f is such that
‖f̄‖V := supx |̄f (x)|/V (x) < ∞ then

σ2
as(f ) ≤ ‖f̄‖2

V

(
1 + λ

1− λ
π(V 2) +

2(K − λ− β)

β(1− λ)
π(V )

)
,

C0 ≤
λ

1− λ
π(V ) +

K − λ(1 + β)

β(1− λ)
,

C1(f )2 ≤ 1
(1− λ)2 ξ(V 2) +

2(K − λ− β)

β(1− λ)2 ξ(V )

+
β(3 + λ)(K 2 − λ2 − β) + 2(1 + λ)(K − λ− β)2

β2(1− λ)2(1 + λ)
,

C2(f )2 ≤ analogous expression with ξ replaced by ξPn.



Explicit bounds under drift condition

Further bounds on quantities π(V ), π(V 2), ξPn(V ), ξPn(V 2),
‖f̄‖V .

Under Assumptions SmallSet and Drift,

π(V ) ≤ π(J)
K − λ

1− λ
≤ K − λ

1− λ
,

π(V 2) ≤ π(J)
K 2 − λ2

1− λ2 ≤ K 2 − λ2

1− λ2 ,

if ξ(V ) ≤ K
1− λ

then ξPn(V ) ≤ K
1− λ

,

if ξ(V 2) ≤ K 2

1− λ2 then ξPn(V 2) ≤ K 2

1− λ2 ,

‖f̄‖V ≤ ‖f‖V +
π(J)(K − λ)

(1− λ) infx∈X V (x)
≤ ‖f‖V +

K − λ

1− λ
.
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Confidence estimation via Median of Averages
Goal:

P(|θ̂ − θ| ≤ ε) ≥ 1− α

(given precision ε at a given level of confidence 1− α).
Median of Averages (MA) (Jerrum, Valiant and Vazirani,
1986):
Generate m independent copies of the Markov chain and
compute averages:

X (1)
0 , X (1)

1 , . . . , X (1)
n−1 7−→ θ̂

(1)
n =

n−1∑
i=0

f (X (1)
i ),

· · ·

X (m)
0 , X (m)

1 , . . . , X (m)
n−1 7−→ θ̂

(m)
n =

n−1∑
i=0

f (X (m)
i ).

Estimator MA:

θ̂m,n = med
(
θ̂
(1)
n , . . . , θ̂

(m)
n

)
.



Complexity comparison

Asymptotic level of confidence, based on CLT:

lim
ε→0

P(|θ̂n − θ| > ε) = α,

for θ̂n – a simple average over n samples.

Nonasymptotic level of confidence:

P(|θ̂m,n − θ| > ε) ≤ α,

for θ̂m,n – the MA estimator.
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Complexity comparison
How many samples do we need to achieve accuracy ε at the
confidence level 1− α ?

Asymptotic level for θ̂n:

n ∼ σ2
as(f )
ε2

[
Φ−1(1− α/2)

]2
,

Nonasymptotic level for θ̂m,n:

mn ∼ σ2
as(f )
ε2 C log(2α)−1,

where symbol ∼ refers to α, ε → 0 and C ≈ 19.34 (Niemiro and

Pokarowski, 2009).

Since
[
Φ−1(1− α/2)

]2 ∼ 2 log(2α)−1 for α → 0, nonasymptotic
confidence is about 10 times more expensive than asymptotic
one.
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The end

Thank you.
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