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Problem

Assume that you want to approximate functions from a class F ,

with error in the Lp-sense.

Are algorithms that are based on arbitrary linear functionals (like

Fourier coefficients) better than algorithms that are based on

function values?

Observation: For many classes F it turns out that the answer is:

no, not much better.

Can we prove general results?
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Worst Case Setting

Let F be a Banach space of functions such that the f 7→ f(x) are

continuous. Assume F ⊂ Lp, continuous embedding.

Approximate f ∈ F using linear functionals L ∈ F ∗ or function

values,

An(f) = φn(L1(f), L2(f), . . . , Ln(f)),

where φn : R
n → Lp and Lj ∈ Λ, where Λ ∈ {Λall, Λstd}.

Define

eall−wor
n (F, Lp) = inf

An with Lj∈Λall

sup
‖f‖F ≤1

∥

∥f − An(f)
∥

∥

p

and

estd−wor
n (F, Lp) = inf

An with Lj∈Λstd

sup
‖f‖F ≤1

∥

∥f − An(f)
∥

∥

p
.

MCQMC2010, Warsaw 3



Erich Novak Power of Function Values

Example: Sobolev Spaces, p = 2

a) Standard Sobolev spaces W s
2 ([0, 1]d) with 2s > d, known

eall−wor
n (W s

2 ([0, 1]d), L2) ≍ estd−wor
n (W s

2 ([0, 1]d), L2) ≍ n−s/d.

b) Sobolev spaces W r,mix
2 ([0, 1]d) with r > 1/2, known

eall−wor
n (W r,mix

2 ([0, 1]d), L2) ≍ n−r(log n)(d−1)r,

and

estd−wor
n (W r,mix

2 ([0, 1]d), L2) = O
(

n−r(log n)(d−1)(r+1/2)
)

.

Not known whether this extra power (d − 1)/2 for log is needed.
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Rate of Convergence + Power Function

Assume that (cn) converges to zero. Define its rate of convergence

by

r(cn) = sup{β ≥ 0 | lim
n→∞

cnnβ = 0}.

For α > 0 the rate of convergence of n−α is α.

Compare the rates of eall−wor
n (F, Lp) and of estd−wor

n (F, Lp).

Define the power function by

ℓwor−x(r, p) := inf
F : rall−wor(F,Lp)=r

rstd−wor(F, Lp)

r
,

where x ∈ {H, B} indicates that all Hilbert spaces (x = H) or all

Banach spaces (x = B) are taken, for which the rate is r when we

use linear functionals.
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Double Hilbert Case

Wasilkowski, Woźniakowski (2001):

rall−wor(H, L2) = r > 1
2 implies rstd−wor(H, L2) ≥ rall−wor(H, L2) −

1
2 .

Improved by Kuo, Wasilkowski, Woźniakowski (2009) to

rstd−wor(H, L2) ≥ r − r
2r+1 = 2r2

2r+1 .

Case r ≤ 1/2 was studied in Hinrichs, N., Vybiral (2008): there is a

Hilbert space H such that

rall−wor(H, L2) = r and rstd−wor(H, L2) = 0.

Hence

ℓwor−H(r, 2) = 0 for all r ∈ (0, 1
2 ],

ℓwor−H(r, 2) ∈

[

2r

2r + 1
, 1

]

for all r ∈ ( 1
2 ,∞).

Open Problem: Suppose that r > 1/2. Is it true that

ℓwor−H(r, 2) = 1?
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Simple Hilbert Case

Result of Tandetzky: Hilbert spaces and arbitrary p ∈ [1,∞). For

any r ∈ (0, min( 1
p , 1

2 )] there exists a Hilbert space H continuously

embedded in Lp = Lp([0, 1]) such that

rall−wor(H, Lp) = r and rstd−wor(H, Lp) = 0.

Hence the power function is zero over (0, min( 1
p , 1

2 )]. We do not

know the the power function over (min( 1
p , 1

2 ),∞). Hence, for p 6= 2,

ℓwor−H(r, p) = 0 for all r ∈ (0, min( 1
p , 1

2 )],

ℓwor−H(r, p) ∈ [0, 1] for all r ∈ (min( 1
p , 1

2 ),∞).

Only for p = ∞ we know more, see N. 88.

ℓwor−H/B(r,∞) ∈

[

r − 1

r
, 1

]

for all r > 1.
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Banach Spaces

We summarize the properties of the power function that can be

proved using results from the literature on Sobolev embeddings:

ℓwor−B(r, p) = 0 r ∈ (0, 1] and p ∈ [1, 2],

ℓwor−B(r, p) = 0 r ∈ (0, 1
2 + 1

p ] and p ∈ (2,∞),

ℓwor−B(r, p) ≤ 1 −
1

r

(

1 −
1

p

)

r > 1 and p ∈ [1, 2],

ℓwor−B(r, p) ≤ 1 −
1

2r
r > 1 and p ∈ [2,∞),

1 −
1

r
≤ ℓwor−B(r,∞) ≤ 1 −

1

2r
r > 1.
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Randomized Setting, double Hilbert case

Consider randomized algorithms and define the error by

eran(An) = sup
‖f‖F ≤1

(

Eω‖I(f) − An(f, ω)‖2
p

)1/2
.

Compare the rates of convergence

rall−ran(F, Lp) = r
(

eall−ran
n (F, Lp)

)

and rstd−ran(F, Lp) = r
(

estd−ran
n (F, Lp)

)

.

Result of Wasilkowski, Woźniakowski (2007):

For arbitrary Hilbert spaces I : H → L2(Ω)

rall−ran(H, L2) = rstd−ran(H, L2).

Therefore

ℓ ran−H(r, 2) = 1 for all r > 0.

It was known before that also

rall−ran(H, L2) = rall−wor(H, L2).
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Randomized Setting, other cases

Assume p > 2, consider I : W r
2 ([0, 1]) → Lp([0, 1]).

Mathé (1991): With Λall obtain optimal order n−r.

Heinrich (2008): With Λstd the optimal order is n−r+1/2−1/p.

Hence

ℓ ran−H(r, p) ≤
r − 1/2 + 1/p

r
if r ≥ 1 and p > 2.

Open Problem:

Study the power function in the randomized setting for the Hilbert

case with p ∈ [1, 2) and for the Banach case for all p ∈ [1,∞].
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Average Case Setting with a Gaussian Measure

Let F be a separable Banach space equipped with a zero mean

Gaussian measure µ. Average error

eavg(A) =

(
∫

F

‖f − A(f)‖2
p dµ(f)

)1/p

.

Define the minimal nth average case errors eall−avg
n (F, Lp),

estd−avg
n (F, Lp) and the power function ℓ avg−H/B.

Results known for p = 2.

Wasilkowski, Woźniakowski (2008): Let I : F → L2(Ω) be arbitrary.

Then

rall−avg(F, L2) = rstd−avg(F, L2).

Therefore

ℓ avg−B(r, 2) = 1 for all r > 0.
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