An algorithm for the construction of weighted degree lattice rules

Dirk Nuyens

Joint work with R. Cools and F. Y. Kuo

aDepartment of Computer Science, K.U.Leuven, Belgium

bSchool of Mathematics & Statistics, University of NSW, Australia

MCQMC2010
Warsaw, Poland
August 15–20, 2010
Outline

1. Introduction
2. Degree of exactness
3. Worst case error
4. CBC construction
5. Numerical results
6. Conclusion
Approximate the \(d\)-dimensional integral

\[
I(\mathbf{f}) := \int_{[0,1]^d} \mathbf{f}(\mathbf{x}) \, d\mathbf{x}
\]

by an \(n\)-point (rank-1) lattice rule

\[
Q(\mathbf{f}; \mathbf{z}, n) := \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{f} \left(\left\{ \frac{\mathbf{z}k}{n} \right\} \right)
\]

with “good” generating vector \(\mathbf{z} \in (\mathbb{Z}/n)^d\).

→ What kind of goodness?
Multivariate integration by lattice rules

Approximate the d-dimensional integral

$$I(f) := \int_{[0,1)^d} f(x) \, dx$$

by an n-point (rank-1) lattice rule

$$Q(f; z, n) := \frac{1}{n} \sum_{k=0}^{n-1} f \left(\left\{ \frac{zk}{n} \right\} \right)$$

with “good” generating vector $z \in (\mathbb{Z}_n^\times)^d$.

→ What kind of goodness?
 → Combine degree of exactness and worst case error.
Imagery of good lattice rules and sequences

- (a) rank-1 rule
- (b) Fibonacci lattice
- (c) rank-2 copy rule
- (d) 3^3 seq points
- (e) 64 seq points
- (f) 3^4 seq points
For f with Fourier representation

$$f(x) = \sum_{h \in \mathbb{Z}^d} \hat{f}(h) \exp(2\pi i h \cdot x)$$

we have

$$Q(f; z, n) - I(f) = \sum_{h \in \mathbb{Z}^d} \hat{f}(h) \frac{1}{n} \sum_{k=0}^{n-1} \exp(2\pi i h \cdot zk/n) - \hat{f}(0)$$
Error of integration

For f with Fourier representation

$$f(x) = \sum_{h \in \mathbb{Z}^d} \hat{f}(h) \exp(2\pi i \ h \cdot x)$$

we have

$$Q(f; z, n) - I(f) = \sum_{0 \neq h \in \mathbb{Z}^d, \ h \cdot z \equiv 0 \ (\text{mod } n)} \hat{f}(h).$$

The error is given as a sum over the dual lattice:

$$\{ h \in \mathbb{Z}^d : h \cdot z \equiv 0 \ (\text{mod } n) \} =: \Lambda^\perp.$$

→ Denotes Fourier coefficients which contribute to error.

Preliminaries

Weighted degree lattice rules

Dirk Nuyens
Mark region of interest $A_d(m)$ in Fourier domain of “degree” m (in d dimensions).

Ask to integrate those Fourier terms exactly. I.e.

$$\Lambda^\perp \cap A_d(m) = \{0\}.$$

⇒ Rule of degree (at least) m.

Different regions $A_d(m)$ possible:

- Trigonometric degree.
- Zaremba cross degree.
- Product trigonometric degree.
- …

Aim: create construction algorithm for relatively high d.
The result

We show:

- Need extra weights to control exponential growth in number of dimensions. No surprise. → “Weighted degree of exactness”

- Standard CBC construction delivers rules with “reasonable” degree of exactness.

- New algorithm delivers quite good degrees of exactness. (Comparison for classical trigonometric degree.)

Degrees of exactness

Different regions lead to different degrees of exactness:

- **Trigonometric degree**: crosspolytope (diamond shape)

\[
A_d(m) = \left\{ \mathbf{h} \in \mathbb{Z}^d : \sum_{j=1}^d |h_j| \leq m \right\}.
\]

- **Zaremba degree**: hyperbolic cross

\[
A_d(m) = \left\{ \mathbf{h} \in \mathbb{Z}^d : \prod_{j=1}^d \max(1, |h_j|) \leq m \right\}.
\]

Note: classical **Zaremba index** $\rho = m + 1$.

- **Product degree**: hypercube

\[
A_d(m) = \left\{ \mathbf{h} \in \mathbb{Z}^d : \max_{1 \leq j \leq d} |h_j| \leq m \right\}.
\]
And their Fourier spectra in 2D

Take $m = 5$ (and $d = 2$):

<table>
<thead>
<tr>
<th>Classical degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigonometric degree</td>
</tr>
<tr>
<td>Zaremba degree</td>
</tr>
<tr>
<td>Product degree</td>
</tr>
</tbody>
</table>

For $d \to \infty$ these shapes grow exponentially...
Exponential growth

In fact:

- **Trigonometric degree** (Cools & Sloan, 1996)

\[
|A_d(m)| = \sum_{\ell=0}^{\min(d,m)} \binom{d}{\ell} \binom{m}{\ell} 2^\ell = O(m^d).
\]

- **Zaremba degree**

\[3^{d-1}(2m+1) \leq |A_d(m)| \leq (1+2\zeta(\tau))^d m^\tau \quad \text{for all} \quad \tau > 1.\]

- **Product degree**

\[|A_d(m)| = (2m + 1)^d.\]
And need exponential amount of nodes

When the set $A_d(m)$ is convex and centrally symmetric then the minimal number of points

$$n_{\text{min}} \geq \left| A_d \left(\left\lfloor \frac{m}{2} \right\rfloor \right) \right| = O(m^d),$$

to achieve degree m with a rule of the form

$$\sum_{k=1}^{n} w_k f(t_k).$$

(Cools & Reztsov, 1997)
Assume some variables more important than others

Inspired by classical theory of product rules and weighted spaces from QMC (Sloan & Woźniakowski, 1998), introduce a “weighted degree of exactness”:

- Importance of dimension j modelled by weight β_j.
- Decaying sequence of positive weights
 \[1 = \beta_1 \geq \beta_2 \geq \cdots \geq 0. \]

- The set $A_d(m)$ intersects the jth axis at $\lfloor \beta_j m \rfloor$.

Note: For rank-1 lattice rules with n prime the one-dimensional (projected) degrees are always $n - 1$.
Weighted degrees

- Weighted trigonometric degree:
 \[\mathcal{A}_d(m) = \left\{ h \in \mathbb{Z}^d : \sum_{j=1}^{d} \frac{|h_j|}{\beta_j} \leq m \right\}. \]

- Weighted Zaremba degree:
 \[\mathcal{A}_d(m) = \left\{ h \in \mathbb{Z}^d : \prod_{j=1}^{d} \max\left(1, \frac{|h_j|}{\beta_j}\right) \leq m \right\}. \]

- Weighted product degree:
 \[\mathcal{A}_d(m) = \left\{ h \in \mathbb{Z}^d : \max_{1 \leq j \leq d} \frac{|h_j|}{\beta_j} \leq m \right\}. \]
Weighted degree of exactness

And their controlled sizes

- Weighted Zaremba degree:

\[2m + 1 \leq |A_d(m)| \leq m^\tau \prod_{j=1}^{d} \left(1 + 2\zeta(\tau)\beta_j^\tau \right) \quad \text{for all} \quad \tau > 1. \]

- Weighted product degree:

\[|A_d(m)| = \prod_{j=1}^{d} \left(1 + 2\lfloor \beta_j m \rfloor \right) \leq \exp \left(2m \sum_{j=1}^{d} \beta_j \right). \]

(Similar proof as in (Kuo, Sloan & Woźniakowksi, 2006).)

- Weighted trigonometric degree (see product degree).

→ These sets are bounded in size independently of \(d \) if

\[\sum_{j=1}^{\infty} \beta_j < \infty. \]
Take $m = 5$, $\beta_1 = 1$, $\beta_2 = 0.6$ (and $d = 2$):
Classical Korobov space

Worst case error in Korobov space E_α

Traditional setting for lattice rules:

- Absolutely convergent Fourier series representation

$$f(x) = \sum_{h \in \mathbb{Z}^d} \hat{f}(h) \exp(2\pi i h \cdot x).$$

- Then $f \in E_\alpha$, for an $\alpha > 1$, if

$$\|f\|_{E_\alpha}^2 := \sum_{h \in \mathbb{Z}^d} r_\alpha(h, \gamma) |\hat{f}(h)|^2 < \infty$$

with

$$r_\alpha(h, \gamma) := \prod_{j=1}^{d} r_\alpha(h_j, \gamma_j), \quad r_\alpha(h_j, \gamma_j) := \begin{cases} 1, & \text{if } h_j = 0, \\ \frac{|h_j|^\alpha}{\gamma_j}, & \text{otherwise}. \end{cases}$$
Classical Korobov space

Worst case error in E_α

Worst case error:

$$e(Q; H) := \sup_{f \in H \atop \|f\|_H \leq 1} |I(f) - Q(f)|.$$

For rank-1 lattice rule in E_α:

$$e^2(z, n; E_\alpha) = -1 + \frac{1}{n} \sum_{k=0}^{n-1} \prod_{j=1}^{d} \left(1 + \gamma_j \sum_{0 \neq h \in \mathbb{Z}} \frac{\exp(2\pi i h z_j k / n)}{|h|^\alpha} \right)$$

$$= \sum_{0 \neq h \in \mathbb{Z}^d \atop h \cdot z \equiv 0 \pmod{n}} \frac{1}{r_\alpha(h, \gamma)}.$$
Classical Korobov space

Interpretation

We had

\[
Q(f; z, n) - I(f) = \sum_{0 \neq h \in \mathbb{Z}^d, h \cdot z \equiv 0 \pmod{n}} \hat{f}(h).
\]

So, the squared worst case error

\[
e^2(z, n; E_\alpha) = \sum_{0 \neq h \in \mathbb{Z}^d, h \cdot z \equiv 0 \pmod{n}} \frac{1}{r_\alpha(h, \gamma)}
\]

is the error of a “worst case function” with Fourier expansion

\[
\xi(x) := \sum_{h \in \mathbb{Z}^d} \frac{\exp(2\pi i h \cdot x)}{r_\alpha(h, \gamma)}.
\]
A new worst case setting

Amend the Korobov space E_α to make new space H:

$$
\|f\|_H := \left(\sum_{h \in A_d(m)} |\hat{f}(h)|^2 + \sum_{h \notin A_d(m)} |\hat{f}(h)|^2 r_\alpha(\gamma, h) \right)^{1/2},
$$

with

$$
1 \geq \gamma_1 \geq \gamma_2 \geq \cdots > 0.
$$

Reproducing kernel of H is then

$$
K(x, y) = \sum_{h \in A_d(m)} \exp(2\pi i \ h \cdot (x-y)) + \sum_{h \notin A_d(m)} \frac{\exp 2\pi i \ h \cdot (x-y)}{r_\alpha(\gamma, h)}.
$$
The squared worst case error of a rank-1 lattice rule is now

\[e_{n,d}^2(z) = \sum_{\substack{0 \neq h \in A_d(m) \\ h \cdot z \equiv 0 \pmod{n}}} 1 + \sum_{\substack{h \notin A_d(m) \\ h \cdot z \equiv 0 \pmod{n}}} \frac{1}{r_\alpha(\gamma, h)}. \]

When the rule has degree \(m \) this worst case error is the same as in the Korobov space \(E_\alpha \).
Towards an algorithm

We now want an algorithm which:

- Is component-by-component (extensibility in d),

 (Sloan, Joe, Kuo, Dick, …).

- Achieves a prescribed (weighted) degree m.

- Has near optimal worst case error in our function space.

- Is strongly tractable with respect to increasing dimensions (given conditions on the weights).

- Has acceptable construction cost.

 → Fast CBC construction (N. & Cools, 2006).
Theorem (Inductive step for degree of exactness: $s \to s + 1$)

Let $c > 1$ be fixed, m be given, and suppose that $n > m$ is a prime number satisfying

$$n > 1 + \frac{c}{c-1} \left| \mathcal{A}_{s+1}(m) \right| - \left| \mathcal{A}_s(m) \right| - 2 \left\lfloor \beta_{s+1} m \right\rfloor. $$

If $z \in \mathbb{Z}_n^s$ satisfies

$$h \cdot z \not\equiv 0 \pmod{n} \quad \forall \ h \in \mathcal{A}_s(m) \setminus \{0\},$$

then there are “more than $\frac{1}{c}(n - 1)$” choices of z_{s+1} such that

$$(h, h_{s+1}) \cdot (z, z_{s+1}) \not\equiv 0 \pmod{n} \quad \forall \ (h, h_{s+1}) \in \mathcal{A}_{s+1}(m) \setminus \{0\}. $$
Inductive steps

On the number of points...

The required n is quite large:

$$n > 1 + \frac{c}{c - 1} \left| A_{s+1}(m) \right| - \left| A_s(m) \right| - 2 \left\lfloor \beta_{s+1} m \right\rfloor.$$

For unweighted product degree the lower bound is

$$n_{\min} \gtrsim (m + 1)^{s+1}$$

while the condition above (for $c = 2$) says

$$n > 1 + 2m((2m + 1)^s - 1).$$

This is due to a very conservative estimate in the proof where we exclude “bad choices” for z_{s+1}: every bad choice is excluded at least twice by point-symmetry,

$$h \cdot z \equiv -h_{s+1}z_{s+1} \pmod{n} \equiv -h \cdot z \equiv h_{s+1}z_{s+1} \pmod{n},$$

but the same z_{s+1} may be excluded many times more.
Inductive steps

Add in result on the worst case error

Theorem (Combined inductive step: $s \rightarrow s + 1$)

Let $c > 1$ and $n > m$ be a prime number large enough (previous condition). Suppose that $z \in \mathbb{Z}_n^* s$ has weighted degree m, and

$$e_{n,s}^2(z) \leq \left(\frac{c}{n-1} \prod_{j=1}^{s} \left(1 + 2\zeta(\alpha \lambda) \gamma_j^\lambda\right)\right)^{1/\lambda}$$

for all $\lambda \in (1/\alpha, 1]$.

Then there is “at least one” z_{s+1} such that we have weighted degree m in $s + 1$ dimensions, and

$$e_{n,s+1}^2(z, z_{s+1}) \leq \left(\frac{c}{n-1} \prod_{j=1}^{s+1} \left(1 + 2\zeta(\alpha \lambda) \gamma_j^\lambda\right)\right)^{1/\lambda}.$$

Proof uses idea from (Dick, Pillichshammer & Waterhouse, 2008).
The basic algorithm

A CBC algorithm

Let $c > 1$ and $n > m$ be a prime number satisfying

$$n > 1 + \frac{c}{c-1} \max_{1 \leq s \leq d-1} \frac{|A_{s+1}(m)| - |A_s(m)| - 2|\beta_{s+1}m|}{2}.$$

1. Set $z_1 = 1$ and form the set $A_1(m)$.
2. For each $s = 1, \ldots, d-1$, with $z = (z_1, \ldots, z_s)$ fixed and $A_s(m)$ already formed, do the following:
 (a) Form the set $A_{s+1}(m)$ from $A_s(m)$.
 (b) Exclude $z_{s+1} \in \mathbb{Z}^*_n$ if $h_{s+1}z_{s+1} \equiv -h \cdot z \pmod{n}$ for any $(h, h_{s+1}) \in A_{s+1}(m) \setminus \{0\}$.
 (c) Find the z_{s+1} from the remaining choices in \mathbb{Z}^*_n that minimizes $e^2_{n,s+1}(z, z_{s+1})$.

Weighted degree lattice rules

Dirk Nuyens
Construction cost

If the conditions

\[n > 1 + \frac{c}{c - 1} \frac{|A_{s+1}(m)| - |A_s(m)| - 2 \lfloor \beta_{s+1} m \rfloor}{2} \]

and

\[\sum_{j=1}^{\infty} \beta_j < \infty \]

are fulfilled then the construction cost is

\[O(|A_d(m)| + dn \log n) = O(dn \log n), \]

using a modified fast component-by-component algorithm based on (N. & Cools, 2006).
Tractability

Tractability conditions

Suppose

\[n > 1 + |A_d(m)| \]

then to have \(e_{n,d}(z) \leq \varepsilon \) it is sufficient to take

\[n \geq 1 + \frac{c}{\varepsilon 2\lambda} \prod_{j=1}^{d} \left(1 + 2\zeta(\alpha \lambda) \gamma_j^\lambda \right) \text{ for all } \lambda \in (1/\alpha, 1]. \]

From which

\[n(\varepsilon, d) \leq \max \left(1 + \frac{2}{\varepsilon 2\lambda} \prod_{j=1}^{d} \left(1 + 2\zeta(\alpha \lambda) \gamma_j^\lambda \right), 1 + |A_d(m)| \right) \]

We have strong tractability when

\[\sum_{j=1}^{\infty} \gamma_j^{1/\alpha} < \infty \quad \text{and} \quad \sum_{j=1}^{\infty} \beta_j < \infty. \]
Basic example for product degree $m = 3$ and $n = 4001$ where

$$\alpha = 2, \quad \gamma_j = 0.75^{j-1}, \quad \beta_j = \gamma_j^{1/\alpha} = (0.866025 \ldots)^{j-1}.$$

| s | z_s | $|A_s(3)|$ | $e_{n,s}(z)$ | drop |
|-----|-------|-----------|--------------|------|
| 1 | 1 | 7 | 4.53e-04 | |
| 2 | 1478 | 35 | 3.30e-03 | 10 | (12) |
| 3 | 563 | 175 | 1.66e-02 | 60 | (68) |
| 4 | 1844 | 525 | 4.88e-02 | 174 | (174) |
| 5 | 827 | 1575 | 1.07e-01 | 524 | (524) |
| 6 | 1318 | 4725 | 1.79e-01 | 1574 | (1574) |
| 7 | 586 | 14175 | 2.63e-01 | 3324 | (4724) |
| 8 | 121 | 42525 | 3.53e-01 | 3982 | (14174) |
| 9 | 1339 | 42525 | 4.26e-01 | 0 | (0) |

→ Almost always same choice as classical CBC.
A modified algorithm

The basic algorithm fixes the degree \(m \) throughout the entire CBC construction. Therefore:

- We might not get the highest degree possible.
- The claimed degree might be much lower than the actual degree.

Modification: dynamically change degree \(m \) in each step, decreasing the degree when the number of bad choices is above a preset threshold \(\kappa \).
Modified algorithm

Results for modified algorithm

Example for trigonometric degree for \(n = 4001 \) and \(\kappa = 4000 - 2 \) where

\[
\alpha = 2, \quad \gamma_j = 0.75^{j-1}, \quad \beta_j = 1.
\]

| \(s \) | \(z_s \) | \(m_s \) | \(|A_s(m_s)| \) | \(e_{n,s}(z) \) | drop |
|---|---|---|---|---|---|
| 1 | 1 | 4000 | 8001 | 4.53e-04 | |
| 2 | 899 | 88 | 15665 | 3.77e-03 | 3990 (7656) |
| 3 | 525 | 25 | 22151 | 1.98e-02 | 3996 (10400) |
| 4 | 538 | 14 | 29961 | 7.45e-02 | 3998 (12922) |
| 5 | 1717 | 9 | 22363 | 1.18e-01 | 3862 (8352) |
| 6 | 919 | 8 | 40081 | 1.94e-01 | 3996 (13496) |
| 7 | 1610 | 6 | 19825 | 2.72e-01 | 3438 (5412) |
| 8 | 635 | 6 | 40081 | 3.54e-01 | 3910 (10122) |
| 9 | 64 | 6 | 75517 | 4.28e-01 | 3996 (17712) |
| 10 | 1518 | 5 | 36365 | 4.94e-01 | 3716 (6996) |
| 11 | 24 | 5 | 56695 | 5.50e-01 | 3894 (10160) |
Comparison for trigonometric degree

This new algorithm can quickly construct rules in tens of dimensions for the unweighted trigonometric degree. How does it compare?

- Comparing to (Cools & Lyness, 2001) in three and four dimensions and (Cools & Govaert, 2003) in five and six dimensions we do slightly worse.
- Comparing to higher dimensional results as in (Cools, Novak & Ritter, 1999) we do much better.
Conclusion

- Introduced a concept of weighted degree.
- Derived component-by-component algorithm which achieves
 - a prescribed weighted degree; and
 - optimal worst case error.

- Adjustable to other degrees of exactness.