Approximating a Geometric fractional Brownian motion and related processes via discrete Wick calculus

a joint work with Christian Bender - Saarland University

Peter Parczewski

Saarland University

15.8.2010

Introduction

The stochastic exponential $\exp\left(B_t-\frac{1}{2}t\right)$ solves the Doléans-Dade SDE

$$dS_t = S_t dB_t , S_0 = 1$$

in terms of the Itô integral.

Introduction

The stochastic exponential $\exp\left(B_t - \frac{1}{2}t\right)$ solves the Doléans-Dade SDE

$$dS_t = S_t dB_t , S_0 = 1$$

in terms of the Itô integral.

For a fractional Brownian motion B_t^H the exponential $\exp\left(B_t^H-\frac{1}{2}t^{2H}\right)$ generalizes the stochastic exponential and solves the fractional Doléans-Dade SDE

$$dS_t = S_t d^{\diamond} B_t^H , S_0 = 1$$

in terms of the fractional Wick-Itô integral.

$$\exp\left(B_t^H - \frac{1}{2}t^{2H}\right) =: \exp^{\diamond}\left(B_t^H\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (B_t^H)^{\diamond n}$$

where \diamond denotes the **Wick product**.

$$\exp\left(B_t^H - \frac{1}{2}t^{2H}\right) =: \exp^{\diamond}\left(B_t^H\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (B_t^H)^{\diamond n}$$

where \diamond denotes the **Wick product**.

More generally, we consider a linear system of SDEs,

$$dX_{t} = (A_{1}X_{t} + A_{2}Y_{t}) d^{\diamond} B_{t}^{H}, X_{0} = x_{0}, dY_{t} = (B_{1}X_{t} + B_{2}Y_{t}) d^{\diamond} B_{t}^{H}, Y_{0} = y_{0}.$$
(1)

$$\exp\left(B_t^H - \frac{1}{2}t^{2H}\right) =: \exp^{\diamond}\left(B_t^H\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (B_t^H)^{\diamond n}$$

where \diamond denotes the **Wick product**.

More generally, we consider a linear system of SDEs,

$$dX_{t} = (A_{1}X_{t} + A_{2}Y_{t}) d^{\diamond} B_{t}^{H}, X_{0} = x_{0}, dY_{t} = (B_{1}X_{t} + B_{2}Y_{t}) d^{\diamond} B_{t}^{H}, Y_{0} = y_{0}.$$
(1)

One can obtain Wick power series expansions for the solution of this system, too.

$$\exp\left(B_t^H - \frac{1}{2}t^{2H}\right) =: \exp^{\diamond}\left(B_t^H\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (B_t^H)^{\diamond n}$$

where \diamond denotes the Wick product.

More generally, we consider a linear system of SDEs,

$$dX_{t} = (A_{1}X_{t} + A_{2}Y_{t}) d^{\diamond} B_{t}^{H}, X_{0} = x_{0}, dY_{t} = (B_{1}X_{t} + B_{2}Y_{t}) d^{\diamond} B_{t}^{H}, Y_{0} = y_{0}.$$
(1)

One can obtain Wick power series expansions for the solution of this system, too.

Aim

Approximate the solution of 1.

- 1 Preliminaries
- 2 The approximation theorems
 - The approximations theorems
 - Examples
- 3 Convergence
 - Walsh decompositions and L²-estimates
 - Hermite recursion
 - Tightness
- 4 Generalizations

Fractional Brownian motion

Definition

A fractional Brownian motion (fBM) B^H with Hurst parameter $H \in (0,1)$ is a continuous zero mean Gaussian process in $\mathbb R$ with stationary increments and covariance function

$$\mathbf{E}[B_t^H B_s^H] = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right)$$

Fractional Brownian motion

Definition

A fractional Brownian motion (fBM) B^H with Hurst parameter $H \in (0,1)$ is a continuous zero mean Gaussian process in \mathbb{R} with stationary increments and covariance function

$$\mathbf{E}[B_t^H B_s^H] = \frac{1}{2} \left(|t|^{2H} + |s|^{2H} - |t - s|^{2H} \right)$$

- B_t^H is not a semimartingale for $H \neq \frac{1}{2}$.
- Long range dependence for $H \in (\frac{1}{2}, 1)$.
- We consider only $H \in (\frac{1}{2}, 1)$.

Representation on the interval [0,1] based on works by Molchan and Golosov (cf. Nualart):

$$B_t^H = \int_0^t z(t,s)dB_s$$

with the deterministic kernel

$$z(t,s) = c_H(H - \frac{1}{2})s^{\frac{1}{2} - H} \int_s^t u^{H - \frac{1}{2}} (u - s)^{H - \frac{3}{2}} du$$

with the constant

$$c_H = \sqrt{\frac{2H\Gamma(\frac{3}{2} - H)}{\Gamma(H + \frac{1}{2})\Gamma(2 - 2H)}}$$

where Γ is the Gamma function and z(t,s)=0 whenever $t\leq s$.

Sottinens approximation

■ Donsker's theorem: $B_t^{(n)} := \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i^n$ converges weakly to a Brownian motion, where ξ_i^n are i.i.d. with $P(\xi_i^n = 1) = P(\xi_i^n = -1) = \frac{1}{2}$.

Sottinens approximation

■ Donsker's theorem: $B_t^{(n)} := \frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor nt \rfloor} \xi_i^n$ converges weakly to a Brownian motion, where ξ_i^n are i.i.d. with $P(\xi_i^n = 1) = P(\xi_i^n = -1) = \frac{1}{2}$.

Theorem (Sottinen 2001)

If
$$z^{(n)}(t,s):=n\int_{s-\frac{1}{n}}^{s}z(\frac{\lfloor nt\rfloor}{n},u)du$$
, then

$$B_t^{H,n} := \int_0^t z^{(n)}(t,s) dB_s^{(n)} = \sum_{i=1}^{\lfloor nt \rfloor} n \int_{\frac{i-1}{n}}^{\frac{i}{n}} z(\frac{\lfloor nt \rfloor}{n},s) ds \frac{1}{\sqrt{n}} \xi_i^n \quad (2)$$

converges weakly to a fractional Brownian motion $(B_t^H)_{t \in [0,1]}$.

Definition

For a zero mean Gaussian random variable Φ the **Wick** exponential is defined as

$$\exp^{\diamond}(\Phi) := \exp\left(\Phi - \frac{1}{2}\mathbf{E}[|\Phi|^2]\right)$$

Definition

For a zero mean Gaussian random variable Φ the **Wick** exponential is defined as

$$\exp^{\diamond}\left(\Phi\right) := \exp\left(\Phi - rac{1}{2}\mathbf{E}[|\Phi|^2]
ight)$$

Let Φ and Ψ be zero mean Gaussian random variables. The **Wick product** \diamond of two Wick exponentials is defined by

$$\exp^{\diamond}(\Phi) \diamond \exp^{\diamond}(\Psi) := \exp^{\diamond}(\Phi + \Psi)$$

Definition

For a zero mean Gaussian random variable Φ the **Wick exponential** is defined as

$$\exp^{\diamond}\left(\Phi\right) := \exp\left(\Phi - rac{1}{2}\mathbf{E}[|\Phi|^2]
ight)$$

Let Φ and Ψ be zero mean Gaussian random variables. The **Wick product** \diamond of two Wick exponentials is defined by

$$\exp^{\diamond}(\Phi) \diamond \exp^{\diamond}(\Psi) := \exp^{\diamond}(\Phi + \Psi)$$

Definition

For a zero mean Gaussian random variable Φ the **Wick exponential** is defined as

$$\exp^{\diamond}\left(\Phi\right) := \exp\left(\Phi - rac{1}{2}\mathbf{E}[|\Phi|^2]
ight)$$

Let Φ and Ψ be zero mean Gaussian random variables. The **Wick product** \diamond of two Wick exponentials is defined by

$$\exp^{\diamond}(\Phi) \diamond \exp^{\diamond}(\Psi) := \exp^{\diamond}(\Phi + \Psi)$$

Discrete Wick calculus

$$B_t^{H,n} = \sum_{i=1}^{\lfloor nt \rfloor} n \int_{\frac{i-n}{n}}^{\frac{i}{n}} z(\frac{\lfloor nt \rfloor}{n}, s) ds \frac{1}{\sqrt{n}} \xi_i^n$$

Discrete Wick calculus

$$B_{t}^{H,n} = \sum_{i=1}^{\lfloor nt \rfloor} n \int_{\frac{i-n}{n}}^{\frac{i}{n}} z(\frac{\lfloor nt \rfloor}{n}, s) ds \frac{1}{\sqrt{n}} \xi_{i}^{n}$$

Definition

For any fixed $n \in \mathbb{N}$ the **discrete Wick product** is defined as

$$\prod_{i\subset A}\xi_i^n\diamond_n\prod_{i\subset B}\xi_i^n\ :=\ \left\{\begin{array}{cc} \prod_{i\subset A\cup B}\xi_i^n & \text{if } A\cap B=\emptyset\\ 0 & \text{otherwise} \end{array}\right.$$

where $A, B \subseteq \{1, \ldots, n\}$.

Walsh decomposition

We denote by $\mathcal{F}_n := \sigma\left(\xi_1^n, \xi_2^n, \dots, \xi_n^n\right)$ the σ -field generated by the Bernoulli variables.

Walsh decomposition

We denote by $\mathcal{F}_n := \sigma\left(\xi_1^n, \xi_2^n, \dots, \xi_n^n\right)$ the σ -field generated by the Bernoulli variables.

Every $X \in L^2(\Omega, \mathcal{F}_n, P)$ has a unique expansion, called the **Walsh** decomposition,

$$X = \sum_{A\subseteq\{1,\dots,n\}} x_A^n \Psi_A^n,$$

where
$$\Psi_A^n := \prod_{i \in A} \xi_i^n$$
, $x_A^n \in \mathbb{R}$.

Walsh decomposition

We denote by $\mathcal{F}_n := \sigma\left(\xi_1^n, \xi_2^n, \dots, \xi_n^n\right)$ the σ -field generated by the Bernoulli variables.

Every $X \in L^2(\Omega, \mathcal{F}_n, P)$ has a unique expansion, called the **Walsh** decomposition,

$$X = \sum_{A \subseteq \{1,\dots,n\}} x_A^n \Psi_A^n,$$

where $\Psi_A^n := \prod_{i \in A} \xi_i^n$, $x_A^n \in \mathbb{R}$.

■ For
$$X, Y \in L^2(\Omega, \mathcal{F}_n, P)$$
 , $\mathbf{E}[XY] = \sum_{A \subseteq \{1,...,n\}} x_A^n y_A^n$.

Hermite polynomials

Definition

The Hermite polynomial of degree $n \in \mathbb{N}$ with parameter p is defined as

$$h_p^n(x) := (-p)^n \exp\left(\frac{x^2}{2p}\right) \frac{d^n}{dx^n} \exp\left(\frac{-x^2}{2p}\right).$$

Hermite polynomials

Definition

The Hermite polynomial of degree $n \in \mathbb{N}$ with parameter p is defined as

$$h_p^n(x) := (-p)^n \exp\left(\frac{x^2}{2p}\right) \frac{d^n}{dx^n} \exp\left(\frac{-x^2}{2p}\right).$$

$$\exp(x - \frac{1}{2}p) = \sum_{n=0}^{\infty} \frac{1}{n!} h_p^n(x)$$
 (3)

Hermite polynomials

Definition

The Hermite polynomial of degree $n \in \mathbb{N}$ with parameter p is defined as

$$h_p^n(x) := (-p)^n \exp\left(\frac{x^2}{2p}\right) \frac{d^n}{dx^n} \exp\left(\frac{-x^2}{2p}\right).$$

$$\exp(x - \frac{1}{2}p) = \sum_{n=0}^{\infty} \frac{1}{n!} h_p^n(x)$$
 (3)

Hermite recursion formula

$$h_p^{n+1}(x) = x h_p^n(x) - np h_p^{n-1}(x).$$
 (4)

■ By the fractional Itô formula we have

$$d(B_t^H)^{\diamond k} = k(B_t^H)^{\diamond k-1} d^{\diamond} B_t^H, \qquad (B_0^H)^{\diamond k} = \mathbf{1}_{\{k=0\}}. \quad (5)$$

■ By the fractional Itô formula we have

$$d(B_t^H)^{\diamond k} = k(B_t^H)^{\diamond k-1} d^{\diamond} B_t^H, \qquad (B_0^H)^{\diamond k} = \mathbf{1}_{\{k=0\}}. \quad (5)$$

■ For any Gaussian random variable $\Phi \sim \mathcal{N}(0, \sigma)$ and all $n \in \mathbb{N}$,

$$\Phi^{\diamond n} = h_{\sigma^2}^n(\Phi). \tag{6}$$

By the fractional Itô formula we have

$$d(B_t^H)^{\diamond k} = k(B_t^H)^{\diamond k-1} d^{\diamond} B_t^H, \qquad (B_0^H)^{\diamond k} = \mathbf{1}_{\{k=0\}}. \quad (5)$$

■ For any Gaussian random variable $\Phi \sim \mathcal{N}(0, \sigma)$ and all $n \in \mathbb{N}$,

$$\Phi^{\diamond n} = h_{\sigma^2}^n(\Phi). \tag{6}$$

$$\bullet \exp\left(B_t^H - \frac{1}{2}t^{2H}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (B_t^H)^{\lozenge n}$$

By the fractional Itô formula we have

$$d(B_t^H)^{\diamond k} = k(B_t^H)^{\diamond k-1} d^{\diamond} B_t^H, \qquad (B_0^H)^{\diamond k} = \mathbf{1}_{\{k=0\}}. \quad (5)$$

■ For any Gaussian random variable $\Phi \sim \mathcal{N}(0, \sigma)$ and all $n \in \mathbb{N}$,

$$\Phi^{\diamond n} = h_{\sigma^2}^n(\Phi). \tag{6}$$

- lacksquare $\exp\left(B_t^H \frac{1}{2}t^{2H}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} (B_t^H)^{\diamond n}$
- \bullet exp $^{\diamond}$ (B_t^H) solves the fractional Doléans-Dade SDE.

The coefficients of the solution of

$$dX_{t} = (A_{1}X_{t} + A_{2}Y_{t}) d^{\diamond} B_{t}^{H}, X_{0} = x_{0},$$

$$dY_{t} = (B_{1}X_{t} + B_{2}Y_{t}) d^{\diamond} B_{t}^{H}, Y_{0} = y_{0},$$

$$X_{t} = \sum_{k=0}^{\infty} \frac{a_{k}}{k!} (B_{t}^{H})^{\diamond k}, Y_{t} = \sum_{k=0}^{\infty} \frac{b_{k}}{k!} (B_{t}^{H})^{\diamond k}, (7)$$

can be obtained recursively via (5) to be

$$a_0 = x_0, \ b_0 = y_0, \ a_k = A_1 a_{k-1} + A_2 b_{k-1}, \ b_k = B_1 a_{k-1} + B_2 b_{k-1}.$$

The approximation theorems

Theorem

Suppose

- $\lim_{n\to\infty} a_{n,k} = a_k \text{ exists for all } k\in\mathbb{N}.$
- **2** There exists a $C \in \mathbb{R}_+$, so that $|a_{n,k}| \leq C^k$ for all $n, k \in \mathbb{N}$.

Then the sequence of processes $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} (B^{H,n})^{\diamond_n k}$ converges

weakly to the Wick power series $\sum_{k=0}^{\infty} \frac{a_k}{k!} (B^H)^{\diamond k}$ in the Skorokhod space $D([0,1],\mathbb{R})$.

$$U_{l}^{k,n} = U_{l-1}^{k,n} + kU_{l-1}^{k-1,n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n} \right), U_{l}^{0,n} = 1, \ U_{0}^{k,n} = 0 \ (8)$$

$$U_{l}^{k,n} = U_{l-1}^{k,n} + kU_{l-1}^{k-1,n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n} \right), U_{l}^{0,n} = 1, \ U_{0}^{k,n} = 0 \ (8)$$

•
$$U^{0,n} = 1 = (B^{H,n})^{\diamond_n 0}$$
 and $U^{1,n} = (B^{H,n})^{\diamond_n 1}$.

$$U_{l}^{k,n} = U_{l-1}^{k,n} + kU_{l-1}^{k-1,n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n} \right), U_{l}^{0,n} = 1, \ U_{0}^{k,n} = 0 \ (8)$$

$$lacksquare$$
 $U^{0,n}=1=\left(B^{H,n}
ight)^{\diamondsuit_n0}$ and $U^{1,n}=\left(B^{H,n}
ight)^{\diamondsuit_n1}$

■ But
$$U_2^{2,n} = 2B_{\frac{1}{n}}^{H,n} \diamond_n B_{\frac{2}{n}}^{H,n} \neq B_{\frac{2}{n}}^{H,n} \diamond_n B_{\frac{2}{n}}^{H,n} = \left(B_{\frac{2}{n}}^{H,n}\right)^{\diamond_{n}2}$$
.

$$U_{l}^{k,n} = U_{l-1}^{k,n} + kU_{l-1}^{k-1,n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n} \right), U_{l}^{0,n} = 1, \ U_{0}^{k,n} = 0 \ (8)$$

- $U^{0,n} = 1 = (B^{H,n})^{\diamond_n 0}$ and $U^{1,n} = (B^{H,n})^{\diamond_n 1}$.
- But $U_2^{2,n} = 2B_{\frac{1}{n}}^{H,n} \diamond_n B_{\frac{2}{n}}^{H,n} \neq B_{\frac{2}{n}}^{H,n} \diamond_n B_{\frac{2}{n}}^{H,n} = \left(B_{\frac{2}{n}}^{H,n}\right)^{\diamond_{n^2}}$.
- The discrete Wick powers are not the solutions for (8) if k > 2.

Theorem

Suppose

- $\lim_{n\to\infty} a_{n,k} = a_k \text{ exists for all } k \in \mathbb{N}.$
- **2** There exists a $C \in \mathbb{R}_+$, so that $|a_{n,k}| \leq C^k$ for all $n, k \in \mathbb{N}$.

Define $\widetilde{U}_t^{k,n} := U_{|nt|}^{k,n}$ as the piecewise constant interpolation of (8).

Then the sequence of processes $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} \widetilde{U}^{k,n}$ converges weakly to

the Wick power series $\sum_{k=0}^{\infty} \frac{a_k}{k!} (B^H)^{\diamond k}$ in the Skorokhod space $D([0,1],\mathbb{R})$.

Example (Geometric fractional Brownian motion)

$$\begin{split} \exp^{\diamond_n}\left(B^{H,n}_t\right) := \sum_{k=0}^{\lfloor nt\rfloor} \frac{1}{k!} \left(B^{H,n}_t\right)^{\diamond_n k} &\stackrel{d}{\to} \exp^{\diamond}\left(B^H\right), \\ \widetilde{S}^n := \sum_{k=0}^n \frac{1}{k!} \widetilde{U}^{k,n} &\stackrel{d}{\to} \exp^{\diamond}\left(B^H\right). \end{split}$$

Example (Geometric fractional Brownian motion)

$$\begin{split} \exp^{\lozenge_n}\left(B_t^{H,n}\right) &:= \sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{k!} \left(B_t^{H,n}\right)^{\lozenge_n k} \overset{d}{\to} \exp^{\lozenge}\left(B^H\right), \\ \widetilde{S}^n &:= \sum_{k=0}^n \frac{1}{k!} \widetilde{U}^{k,n} \overset{d}{\longrightarrow} \exp^{\lozenge}\left(B^H\right). \\ S_l^n &= S_{l-1}^n + S_{l-1}^n \lozenge_n\left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n}\right), \qquad S_0^n = 1 \end{split} \tag{9}$$

for l = 1, ..., n, where $S_l^n = \widetilde{S}_{\frac{l}{n}}^n$.

Example (Geometric fractional Brownian motion)

$$\exp^{\diamond_n}\left(B_t^{H,n}\right) := \sum_{k=0}^{\lfloor nt \rfloor} \frac{1}{k!} \left(B_t^{H,n}\right)^{\diamond_n k} \stackrel{d}{\to} \exp^{\diamond}\left(B^H\right),$$

$$\widetilde{S}^n := \sum_{k=0}^n \frac{1}{k!} \widetilde{U}^{k,n} \stackrel{d}{\longrightarrow} \exp^{\diamond}\left(B^H\right).$$

$$S_l^n = S_{l-1}^n + S_{l-1}^n \diamond_n \left(B_{\frac{l}{2}}^{H,n} - B_{\frac{l-1}{2}}^{H,n}\right), \qquad S_0^n = 1$$
(9)

for
$$l=1,\ldots,n$$
, where $S_l^n=\widetilde{S}_{\underline{l}}^n$.

Hence, the piecewise constant interpolation of (9) converges weakly to the solution of the fractional Doléans-Dade equation.

Example (Wick-sine and Wick-cosine)

The piecewise constant interpolation of

$$X_{l}^{n} = X_{l-1}^{n} + Y_{l-1}^{n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n} \right), X_{0}^{n} = 0,$$

$$Y_{l}^{n} = Y_{l-1}^{n} - X_{l-1}^{n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n} \right), Y_{0}^{n} = 1,$$

converges weakly to the solution of the linear system

$$dX_t = Y_t d^{\diamond} B_t^H \qquad X_0 = 0,$$

$$dY_t = -X_t d^{\diamond} B_t^H \qquad Y_0 = 1,$$

the process $\left(\sin^{\diamond}\left(B_{t}^{H}\right),\cos^{\diamond}\left(B_{t}^{H}\right)\right)^{T}$.

Example (Linear SDE with drift)

Suppose $\mu, s_0 \in \mathbb{R}$, $\sigma > 0$. Then $\widetilde{S}^n_t := S^n_{\lfloor nt \rfloor}$, where S^n is the solution of the Wick difference equation

$$S_{l}^{n} = \left(1 + \frac{\mu}{n}\right) S_{l-1}^{n} + \sigma S_{l-1}^{n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n}\right), S_{0}^{n} = s_{0}, (10)$$

converges weakly to the solution of the linear SDE with drift

$$dS_t = \mu S_t dt + \sigma S_t d^{\diamond} B_t^H, \qquad S_0 = s_0$$
 (11)

in the Skorokhod space $D([0,1],\mathbb{R})$.

Example (Linear SDE with drift)

Suppose $\mu, s_0 \in \mathbb{R}$, $\sigma > 0$. Then $\widetilde{S}^n_t := S^n_{\lfloor nt \rfloor}$, where S^n is the solution of the Wick difference equation

$$S_{l}^{n} = \left(1 + \frac{\mu}{n}\right) S_{l-1}^{n} + \sigma S_{l-1}^{n} \diamond_{n} \left(B_{\frac{l}{n}}^{H,n} - B_{\frac{l-1}{n}}^{H,n}\right), S_{0}^{n} = s_{0}, (10)$$

converges weakly to the solution of the linear SDE with drift

$$dS_t = \mu S_t dt + \sigma S_t d^{\diamond} B_t^H, \qquad S_0 = s_0$$
 (11)

in the Skorokhod space $D([0,1],\mathbb{R})$.

■ This was conjectured by Bender and Elliott in their study of the discrete Wick-fractional Black-Scholes market.

Denote

$$b_{t,A}^n := \prod_{i \in A} b_{t,i}^n, \qquad \Psi_A^n := \prod_{i \in A} \xi_i^n$$

Denote

$$b_{t,A}^n := \prod_{i \in A} b_{t,i}^n, \qquad \Psi_A^n := \prod_{i \in A} \xi_i^n$$

Proposition

$$\frac{1}{k!}U_{l}^{k,n} = \sum_{\substack{C \subseteq \{1,\dots,l\}\\|C|=k}} \left(\sum_{\substack{m:C \to \{1,\dots,l\}\\\text{injective}}} \prod_{p \in C} (b_{\frac{m}{n},p}^{n} - b_{\frac{m-1}{n},p}^{n}) \right) \Psi_{C}^{n}, \quad (12)$$

$$\frac{1}{k!} \left(B_{\frac{l}{n}}^{H,n} \right)^{\diamond_{n}k} = \sum_{\substack{C \subseteq \{1,\dots,l\}\\|C|=k}} b_{\frac{l}{n},C}^{n} \Psi_{C}^{n}, \tag{13}$$

For all
$$t \in [0,1]$$
 and $i \in \{1, \dots, \lfloor nt \rfloor\}$,

$$b_{t,i}^n \leq 2c_H n^{-(1-H)}.$$

For all
$$t \in [0,1]$$
 and $i \in \{1,\ldots,\lfloor nt \rfloor\}$,

$$b_{t,i}^n \leq 2c_H n^{-(1-H)}.$$

Theorem (Nieminen 2004)

$$\mathbf{E}\left[B_t^{H,n}B_s^{H,n}\right]\longrightarrow\mathbf{E}\left[B_t^HB_s^H\right].$$

For all
$$t \in [0,1]$$
 and $i \in \{1, \ldots, \lfloor nt \rfloor\}$,

$$b_{t,i}^n \leq 2c_H n^{-(1-H)}$$
.

Theorem (Nieminen 2004)

$$\mathbf{E}\left[B_t^{H,n}B_s^{H,n}
ight]\longrightarrow\mathbf{E}\left[B_t^HB_s^H
ight].$$

Proposition

$$\lim_{n \to \infty} \mathbf{E} \left[\left(\left(B_t^{H,n} \right)^{\diamond_n N} - \left(B_s^{H,n} \right)^{\diamond_n N} \right)^2 \right]$$

$$= \mathbf{E} \left[\left(\left(B_t^H \right)^{\diamond N} - \left(B_s^H \right)^{\diamond N} \right)^2 \right].$$

1 Convergence of the finite-dimensional distributions

- 1 Convergence of the finite-dimensional distributions
 - Wick powers $(B^{H,n})^{\diamond_n k} \stackrel{\mathit{fd}}{\rightarrow} (B^H)^{\diamond k}$.

- 1 Convergence of the finite-dimensional distributions
 - Wick powers $(B^{H,n})^{\diamond_n k} \stackrel{fd}{\rightarrow} (B^H)^{\diamond k}$.
 - Wick power series $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} (B^{H,n})^{\diamondsuit_n k} \xrightarrow{fd} \sum_{k=0}^{n} \frac{a_k}{k!} (B^H)^{\diamondsuit k}$.

- 1 Convergence of the finite-dimensional distributions
 - Wick powers $(B^{H,n})^{\diamond_n k} \stackrel{fd}{\rightarrow} (B^H)^{\diamond k}$.
 - Wick power series $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} (B^{H,n})^{\diamond_{n}k} \xrightarrow{fd} \sum_{k=0}^{n} \frac{a_{k}}{k!} (B^{H})^{\diamond_{k}k}$.
 - Wick power series applied on the recursive defined functionals $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} \widetilde{U}^{k,n} \xrightarrow{fd} \sum_{k=0}^{n} \frac{a_{k}}{k!} (B^{H})^{\diamond k}.$

- 1 Convergence of the finite-dimensional distributions
 - Wick powers $(B^{H,n})^{\diamond_n k} \stackrel{fd}{\rightarrow} (B^H)^{\diamond k}$.
 - Wick power series $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} \left(B^{H,n}\right)^{\diamond_{n}k} \xrightarrow{fd} \sum_{k=0}^{n} \frac{a_{k}}{k!} \left(B^{H}\right)^{\diamond_{k}k}$.

 Wick power series applied on the recursive defined functionals
 - Wick power series applied on the recursive defined functionals $\sum_{k=0}^{n} \frac{a_{n,k}}{k!} \widetilde{U}^{k,n} \xrightarrow{fd} \sum_{k=0}^{n} \frac{a_{k}}{k!} \left(B^{H}\right)^{\diamond k}.$
- 2 Tightness of the sequences of processes

$$\left(\sum_{k=0}^{n} \frac{a_{n,k}}{k!} \left(B^{H,n}\right)^{\diamond_{n}k}\right)_{n \in \mathbb{N}}, \left(\sum_{k=0}^{n} \frac{a_{n,k}}{k!} \widetilde{U}^{k,n}\right)_{n \in \mathbb{N}}.$$

Convergence of the finite-dimensional distributions

Convergence of the finite-dimensional distributions

$$\bullet (B_t^H)^{\diamond (N+1)} = (B_t^H)(B_t^H)^{\diamond N} - |t|^{2H} N(B_t^H)^{\diamond (N-1)}$$

Proposition (Discrete Hermite recursion)

$$(B_t^{H,n})^{\diamond_n(N+1)} = B_t^{H,n} (B_t^{H,n})^{\diamond_n N} - N \mathbf{E} \left[(B_t^{H,n})^2 \right] (B_t^{H,n})^{\diamond_n(N-1)} + R(B_t^{H,n}, N), \quad (14)$$

Convergence of the finite-dimensional distributions

$$\bullet (B_t^H)^{\diamond (N+1)} = (B_t^H)(B_t^H)^{\diamond N} - |t|^{2H} N(B_t^H)^{\diamond (N-1)}$$

Proposition (Discrete Hermite recursion)

$$(B_{t}^{H,n})^{\diamond_{n}(N+1)} = B_{t}^{H,n}(B_{t}^{H,n})^{\diamond_{n}N} - N\mathbf{E}\left[(B_{t}^{H,n})^{2}\right](B_{t}^{H,n})^{\diamond_{n}(N-1)} + R(B_{t}^{H,n},N), \quad (14)$$

$$R(B_t^{H,n}, N) = N! \sum_{\substack{C \subseteq \{1, \dots \lfloor nt \rfloor \} \\ |C| = N-1}} b_{t,C}^n \Psi_C^n \sum_{i \in C} \left(b_{t,i}^n\right)^2, \qquad (15)$$

$$\mathbf{E}\left[\left(R(B_t^{H,n},N)\right)^2\right] \le 16c_H^4 N! N^3 n^{-(4-4H)}.$$
 (16)

For all
$$N \in \mathbb{N}$$
,

$$\left(1, B^{H,n}, \dots, (B^{H,n})^{\diamond_n N}\right) \stackrel{fd}{\longrightarrow} \left(1, B^H, \dots, (B^H)^{\diamond N}\right).$$
 (17)

For all $N \in \mathbb{N}$,

$$\left(1, B^{H,n}, \dots, (B^{H,n})^{\diamond_n N}\right) \stackrel{fd}{\longrightarrow} \left(1, B^H, \dots, (B^H)^{\diamond N}\right). \tag{17}$$

Sketch of proof.

For all $N \in \mathbb{N}$,

$$\left(1, B^{H,n}, \dots, (B^{H,n})^{\diamond_n N}\right) \xrightarrow{fd} \left(1, B^H, \dots, (B^H)^{\diamond N}\right). \tag{17}$$

Sketch of proof.

Induction.

For all $N \in \mathbb{N}$,

$$\left(1, B^{H,n}, \dots, (B^{H,n})^{\diamond_n N}\right) \xrightarrow{fd} \left(1, B^H, \dots, (B^H)^{\diamond N}\right). \tag{17}$$

Sketch of proof.

Induction. Discrete Hermite recursion.

For all $N \in \mathbb{N}$,

$$\left(1, B^{H,n}, \dots, (B^{H,n})^{\diamond_n N}\right) \stackrel{fd}{\longrightarrow} \left(1, B^H, \dots, (B^H)^{\diamond N}\right). \tag{17}$$

Sketch of proof.

Induction. Discrete Hermite recursion. Cramér-Wold device.

In the context of the approximation theorems convergence holds in finite dimensional distributions.

In the context of the approximation theorems convergence holds in finite dimensional distributions.

An idea of proof: Billingsley Theorem 4.2.

$$\forall m \in \mathbb{N} \ \sum_{k=0}^{m} \frac{a_{n,k}}{k!} (B_t^{H,n})^{\lozenge_n k} \xrightarrow{fd} \sum_{k=0}^{m} \frac{a_k}{k!} (B_t^H)^{\lozenge k} \text{ as } n \to \infty,$$

$$\lim_{m\to\infty}\limsup_{n\to\infty}\mathbf{E}\left[|\sum_{k=0}^n\frac{a_{n,k}}{k!}\left(B_t^{H,n}\right)^{\diamond_n k}-\sum_{k=0}^m\frac{a_{n,k}}{k!}(B_t^{H,n})^{\diamond_n k}|\wedge 1\right]=0,$$

$$\sum_{k=0}^{m} \frac{a_k}{k!} (B_t^H)^{\diamond k} \xrightarrow{fd} \sum_{k=0}^{\infty} \frac{a_k}{k!} (B_t^H)^{\diamond k} \quad \text{as } m \to \infty.$$

Tightness

Theorem (a variant of Billingsley Theorem 15.6)

Suppose for the random elements Y^n in the Skorokhod space $D([0,1],\mathbb{R})$ and $\sum_{k=0}^{\infty} \frac{a_k}{k!} \left(B^H\right)^{\diamond k}$ in $C([0,1],\mathbb{R})$,

$$Y^n \xrightarrow{fd} \sum_{k=0}^{\infty} \frac{a_k}{k!} \left(B^H \right)^{\diamond k},$$

$$s \le t$$
, $\mathbf{E}\left[\left(Y_t^n - Y_s^n\right)^2\right] \le L\left|\frac{\lfloor nt \rfloor}{n} - \frac{\lfloor ns \rfloor}{n}\right|^{2H}$,

where L > 0 is a constant. Then Y^n converges weakly to $\sum_{k=1}^{\infty} \frac{a_k}{k!} (B^H)^{\diamond k} \text{ in } D([0,1], \mathbb{R}).$

Lemma

Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space, $N \geq 1$,

$$||x||^{2N} + ||y||^{2N} - 2(\langle x, y \rangle)^N \le 2^{N+1}(||x|| + ||y||)^{2(N-1)}||x - y||^2.$$

Lemma

Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space, $N \geq 1$,

$$||x||^{2N} + ||y||^{2N} - 2(\langle x, y \rangle)^N \le 2^{N+1}(||x|| + ||y||)^{2(N-1)}||x - y||^2.$$

Lemma

$$\frac{1}{N!} \mathbf{E} \left[\left((B_t^{H,n})^{\diamond_n N} - (B_s^{H,n})^{\diamond_n N} \right)^2 \right] \leq 8^N \left| \frac{\lfloor nt \rfloor}{n} - \frac{\lfloor ns \rfloor}{n} \right|^{2H}.$$

Lemma

Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space, $N \geq 1$,

$$||x||^{2N} + ||y||^{2N} - 2(\langle x, y \rangle)^N \le 2^{N+1}(||x|| + ||y||)^{2(N-1)}||x - y||^2.$$

Lemma

$$\frac{1}{N!} \mathbf{E} \left[\left((B_t^{H,n})^{\diamond_n N} - (B_s^{H,n})^{\diamond_n N} \right)^2 \right] \leq 8^N \left| \frac{\lfloor nt \rfloor}{n} - \frac{\lfloor ns \rfloor}{n} \right|^{2H}.$$

An idea of proof.

$$\frac{1}{N!} \mathbf{E} \left[\left((B_t^{H,n})^{\diamond_n N} - (B_s^{H,n})^{\diamond_n N} \right)^2 \right] \\
\leq \mathbf{E} \left[(B_t^{H,n})^2 \right]^N + \mathbf{E} \left[(B_s^{H,n})^2 \right]^N - 2 \mathbf{E} \left[(B_t^{H,n})(B_s^{H,n}) \right]^N$$

Generalizations

Theorem

Suppose $f:[0,1]\to\mathbb{R}$ is a continuous function. Then $I_H(f)^n$ converges weakly to $I_H(f)=\int\limits_0^\cdot f(s)dB_s^H$ in the Skorokhod space, where

$$I_{H}(f)_{t}^{n} := \sum_{i=1}^{\lfloor nt \rfloor} f\left(\frac{i-1}{n}\right) \left(B_{\frac{i}{n}}^{H,n} - B_{\frac{i-1}{n}}^{H,n}\right)$$
$$= \sum_{i=1}^{n} \xi_{i}^{n} \left(\sum_{j=i}^{\lfloor nt \rfloor} f\left(\frac{j-1}{n}\right) \left(b_{\frac{i}{n},i}^{n} - b_{\frac{j-1}{n},i}^{n}\right)\right)$$

is the discrete Wiener integral.

References

- BENDER, CHRISTIAN AND PARCZEWSKI, PETER Approximating a Geometric fractional Brownian motion and related processes via discrete Wick calculus Bernoulli 16(2), (2010), p.389-417.
- KUO, HUI-HSIUNG White noise distribution theory. Probability and Stochastics Series. Boca Raton, FL: CRC Press. (1996).
- 3 MISHURA, YULIA Stochastic calculus for fractional Brownian motion and related processes. Lecture Notes in Mathematics 1929. Berlin: Springer. (2008).
- 4 SOTTINEN, TOMMI Fractional Brownian motion, random walks and binary market models. Finance and Stochastics. 5, (2001), p.343-355.