Approximation with general information versus function evaluations

Ralph Tandetzky

Friedrich Schiller University of Jena, Germany

August 17, 2010

Overview

- 1 The Problem
- 2 What do we know?
- Results
- Overall idea for the proof

The Problem

We want to approximate the embedding operator

$$A: H \to L_p(X)$$
,

where

 H is a Hilbert space of functions on an arbitrary measure space X

The Problem

We want to approximate the embedding operator

$$A: H \to L_p(X)$$
,

where

- H is a Hilbert space of functions on an arbitrary measure space X and
- $1 \le p \le \infty$.

The Problem

We want to approximate the embedding operator

$$A: H \to L_p(X)$$
,

where

- H is a Hilbert space of functions on an arbitrary measure space X and
- $1 \le p \le \infty$.

The optimal algorithms $A_n: H \to L_p(X)$ that use n linear functionals or n function evaluations are linear. That means

$$A_n(f) = \sum_{i=1}^n \alpha_i(f) h_i,$$

The optimal algorithms $A_n: H \to L_p(X)$ that use n linear functionals or n function evaluations are linear. That means

$$A_n(f) = \sum_{i=1}^n \alpha_i(f)h_i,$$

where $h_i \in L_p(X)$

The optimal algorithms $A_n: H \to L_p(X)$ that use n linear functionals or n function evaluations are linear. That means

$$A_n(f) = \sum_{i=1}^n \alpha_i(f) h_i,$$

where $h_i \in L_p(X)$ and

• the $\alpha_i: H \to \mathbb{R}$ are continuous linear functionals

The optimal algorithms $A_n: H \to L_p(X)$ that use n linear functionals or n function evaluations are linear. That means

$$A_n(f) = \sum_{i=1}^n \alpha_i(f) h_i,$$

where $h_i \in L_p(X)$ and

- the $\alpha_i: H \to \mathbb{R}$ are continuous linear functionals or
- the $\alpha_i: H \to \mathbb{R}$ are of the form $\alpha_i(f) = f(x_i)$ for some $x_i \in X$.

The optimal algorithms $A_n: H \to L_p(X)$ that use n linear functionals or n function evaluations are linear. That means

$$A_n(f) = \sum_{i=1}^n \alpha_i(f)h_i,$$

where $h_i \in L_p(X)$ and

- the $\alpha_i: H \to \mathbb{R}$ are continuous linear functionals or
- the $\alpha_i: H \to \mathbb{R}$ are of the form $\alpha_i(f) = f(x_i)$ for some $x_i \in X$.

Measuring the error

Definition (Approximation numbers and sampling numbers)

For $A: H \to L_p(X)$, A(f) := f we define the approximation numbers and sampling numbers as

$$a_n(H \subset L_p(X)) := \inf_{\substack{\alpha_1, \dots, \alpha_n \in H' \\ h_1, \dots, h_n \in L_p \\ \|f\|_H \le 1}} \left\| f - \sum_{i=1}^n \alpha_i(f) h_i \right\|_p,$$

$$g_n(H \subset L_p(X)) := \inf_{\substack{x_1, \dots, x_n \in X \\ h_1, \dots, h_n \in L_p}} \sup_{\substack{f \in H \\ \|f\|_H \leq 1}} \left\| f - \sum_{i=1}^n f(x_i) h_i \right\|_p.$$

Hence $a_n \leq g_n$

Measuring the error

Definition (Approximation numbers and sampling numbers)

For $A: H \to L_p(X)$, A(f) := f we define the approximation numbers and sampling numbers as

$$a_n(H \subset L_p(X)) := \inf_{\substack{\alpha_1, \dots, \alpha_n \in H' \\ h_1, \dots, h_n \in L_p \\ \|f\|_H \le 1}} \left\| f - \sum_{i=1}^n \alpha_i(f) h_i \right\|_p,$$

$$g_n(H \subset L_p(X)) := \inf_{\substack{x_1, \dots, x_n \in X \\ h_1, \dots, h_n \in L_p}} \sup_{\substack{f \in H \\ \|f\|_H \leq 1}} \left\| f - \sum_{i=1}^n f(x_i) h_i \right\|_p.$$

Hence $a_n \leq g_n$.

General information

- Analytically easier to handle
- Known for most spaces.

General information

- Analytically easier to handle
- Known for most spaces.

Function evaluations

Numerically more interesting

General information

- Analytically easier to handle
- Known for most spaces.

Function evaluations

- Numerically more interesting
- Practically easier to implement

General information

- Analytically easier to handle
- Known for most spaces.

Function evaluations

- Numerically more interesting
- Practically easier to implement
- Unknown for some spaces

General information

- Analytically easier to handle
- Known for most spaces.

Function evaluations

- Numerically more interesting
- Practically easier to implement
- Unknown for some spaces

Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (c_n) is defined as

$$r(c_n) := \sup\{\beta \in \mathbb{R} : \lim_{n \to \infty} c_n n^{\beta} = 0\}$$

Example

We get
$$r(n^{-a}(\log n)^b) = a$$
 for $a > 0$.

Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (c_n) is defined as

$$r(c_n) := \sup\{\beta \in \mathbb{R} : \lim_{n \to \infty} c_n n^{\beta} = 0\}$$

Example

We get $r(n^{-a}(\log n)^b) = a$ for a > 0.

Hence
$$r(a_n) \geq r(g_n)$$
.

Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (c_n) is defined as

$$r(c_n) := \sup\{\beta \in \mathbb{R} : \lim_{n \to \infty} c_n n^{\beta} = 0\}$$

Example

We get $r(n^{-a}(\log n)^b) = a$ for a > 0.

Hence $r(a_n) \geq r(g_n)$.

The BIG question

Is
$$r(a_n) = r(g_n)$$
?

What do we know?

Theorem (Positive results)

For p=2 and $r(a_n)>\frac{1}{2}$ we have

$$r(g_n) \geq \frac{2r(a_n)}{2r(a_n)+1}r(a_n) > \frac{1}{2}r(a_n).$$

(Kuo, Wasilkowski, Woźniakowski, 2008)

Furthermore: For all known examples where p=2 and $r(a_n)>\frac{1}{2}$ we have

$$r(a_n) = r(g_n)$$

What do we know?

Theorem (Positive results)

For p = 2 and $r(a_n) > \frac{1}{2}$ we have

$$r(g_n) \geq \frac{2r(a_n)}{2r(a_n)+1}r(a_n) > \frac{1}{2}r(a_n).$$

(Kuo, Wasilkowski, Woźniakowski, 2008)

Furthermore: For all known examples where p=2 and $r(a_n)>\frac{1}{2}$ we have

$$r(a_n) = r(g_n)$$

What do we know?

Theorem (Negative results)

There is a Hilbert space embedding $H \subset \ell_2$ with

$$r(a_n)=rac{1}{2}$$
 and $r(g_n)=0$.

(Hinrichs, Novak, Víbiral, 2008)

Results

Theorem (Main result)

For $p \in [1, \infty)$ there exists an embedding $H \subset \ell_p$ with

$$r(a_n) = \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$$
 and $r(g_n) = 0$.

Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional examples: For $N \in \mathbb{N}$ let $H_{N,\delta,\varepsilon} := \mathbb{R}^N$ with

$$||x||_{H_{N,\delta,\varepsilon}}^2 := \frac{1}{\delta^2}(x,y)^2 + \frac{1}{\varepsilon^2}||(x-(x,y)y)||_2^2,$$

where $y = N^{-1/2}(1, \dots, 1) \in \mathbb{R}^N$. For instance for p = 2 this yields

$$a_n(H_{N,\delta,\varepsilon}\subset \ell_2^N)= egin{cases} \delta & ext{for } n=0, \ arepsilon & ext{for } n>0, \end{cases}$$

Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional examples: For $N \in \mathbb{N}$ let $H_{N,\delta,\varepsilon} := \mathbb{R}^N$ with

$$||x||_{H_{N,\delta,\varepsilon}}^2 := \frac{1}{\delta^2}(x,y)^2 + \frac{1}{\varepsilon^2}||(x-(x,y)y)||_2^2,$$

where $y = N^{-1/2}(1, \dots, 1) \in \mathbb{R}^N$. For instance for p = 2 this yields

$$a_n(H_{N,\delta,\varepsilon}\subset \ell_2^N)=egin{cases} \delta & ext{for } n=0,\ arepsilon & ext{for } n>0, \end{cases}$$

$$g_n(H_{N,\delta,\varepsilon}\subset \ell_2^N)\geq rac{1}{\sqrt{rac{1}{\delta^2}+rac{n}{\varepsilon^2N}}}$$

Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional examples: For $N \in \mathbb{N}$ let $H_{N,\delta,\varepsilon} := \mathbb{R}^N$ with

$$||x||_{H_{N,\delta,\varepsilon}}^2 := \frac{1}{\delta^2}(x,y)^2 + \frac{1}{\varepsilon^2}||(x-(x,y)y)||_2^2,$$

where $y = N^{-1/2}(1, \dots, 1) \in \mathbb{R}^N$. For instance for p = 2 this yields

$$a_n(H_{N,\delta,\varepsilon}\subset \ell_2^N)=egin{cases} \delta & ext{for } n=0,\ arepsilon & ext{for } n>0, \end{cases}$$

$$g_n(H_{N,\delta,\varepsilon}\subset \ell_2^N)\geq rac{1}{\sqrt{rac{1}{\delta^2}+rac{n}{\varepsilon^2 N}}}\,.$$

Overall idea for the proof (step 2)

Lemma

Let $p \geq 2$. Furthermore, let $(\kappa_M)_{M \in \mathbb{N}}$ and $(\lambda_M)_{M \in \mathbb{N}}$ be convergent series of real numbers with $\kappa := \lim_{M \to \infty} \kappa_M > \lim_{M \to \infty} \lambda_M =: \lambda$ If for every $M \in \mathbb{N}^+$ there are an $N \in \mathbb{N}^+$ and an embedding of a Hilbert space $H_M \subset \ell_p^N$, such that

$$a_n(H_M \subset \ell_p^N) \le \frac{1}{(M+n)^{\kappa_M}}$$
 for all $n \in \{0, \dots, N\}$, $g_n(H_M \subset \ell_p^N) \ge \frac{1}{n^{\lambda_M}}$ for some $n \in \{0, \dots, N\}$,

then there exists an embedding of a Hilbert space $H \subset \ell_p$ with

$$r(a_n(H \subset \ell_p)) \ge \kappa > \lambda \ge r(g_n(H \subset \ell_p))$$
.

Overall idea for the proof (step 3)

Choose the right parameters N, ε and δ as input for the lemma.

Get the result

Theorem (Main result`

For $p \in [1, \infty)$ there exists an embedding $H \subset \ell_p$ with

$$r(a_n) = \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$$
 and $r(g_n) = 0$

Overall idea for the proof (step 3)

Choose the right parameters N, ε and δ as input for the lemma. Get the result:

Theorem (Main result)

For $p \in [1, \infty)$ there exists an embedding $H \subset \ell_p$ with

$$r(a_n) = \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$$
 and $r(g_n) = 0$.

Open Question

If
$$r(a_n) > \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$$
, does $r(a_n) = r(g_n)$ follow?

Overall idea for the proof (step 3)

Choose the right parameters N, ε and δ as input for the lemma. Get the result:

Theorem (Main result)

For $p \in [1, \infty)$ there exists an embedding $H \subset \ell_p$ with

$$r(a_n) = \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$$
 and $r(g_n) = 0$.

Open Question.

If
$$r(a_n) > \min\left\{\frac{1}{2}, \frac{1}{p}\right\}$$
, does $r(a_n) = r(g_n)$ follow?

Thank you!