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The Problem

We want to approximate the embedding operator

A : H → Lp(X ) ,

where

H is a Hilbert space of functions on an arbitrary measure
space X

and

1 ≤ p ≤ ∞.
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Linear algorithms are optimal

The optimal algorithms An : H → Lp(X ) that use n linear
functionals or n function evaluations are linear. That means

An(f ) =
n∑

i=1

αi (f )hi ,

where hi ∈ Lp(X ) and

the αi : H → R are continuous linear functionals or

the αi : H → R are of the form αi (f ) = f (xi ) for some xi ∈ X .
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Measuring the error

Definition (Approximation numbers and sampling numbers)

For A : H → Lp(X ), A(f ) := f we define the approximation
numbers and sampling numbers as

an(H ⊂ Lp(X )) := inf
α1,...,αn∈H′

h1,...,hn∈Lp

sup
f ∈H
‖f ‖H≤1

∥∥∥∥f −
n∑

i=1

αi (f )hi

∥∥∥∥
p

,

gn(H ⊂ Lp(X )) := inf
x1,...,xn∈X
h1,...,hn∈Lp

sup
f ∈H
‖f ‖H≤1

∥∥∥∥f −
n∑

i=1

f (xi )hi

∥∥∥∥
p

.

Hence an ≤ gn.
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General information versus function evaluations

General information

Analytically easier to handle

Known for most spaces.

Function evaluations

Numerically more interesting

Practically easier to
implement

Unknown for some spaces
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Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (cn) is defined as

r(cn) := sup{β ∈ R : lim
n→∞

cnnβ = 0}

Example

We get r
(
n−a(log n)b

)
= a for a > 0.

Hence r(an) ≥ r(gn).
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The BIG question

Is r(an) = r(gn)?
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What do we know?

Theorem (Positive results)

For p = 2 and r(an) > 1
2 we have

r(gn) ≥ 2r(an)

2r(an) + 1
r(an) >

1

2
r(an) .

(Kuo, Wasilkowski, Woźniakowski, 2008)

Furthermore: For all known examples where p = 2 and r(an) > 1
2

we have

r(an) = r(gn)
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What do we know?

Theorem (Negative results)

There is a Hilbert space embedding H ⊂ `2 with

r(an) =
1

2
and r(gn) = 0 .

(Hinrichs, Novak, V́ıbiral, 2008)
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Results

Theorem (Main result)

For p ∈ [1,∞) there exists an embedding H ⊂ `p with

r(an) = min

{
1

2
,

1

p

}
and r(gn) = 0 .
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Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional
examples: For N ∈ N let HN,δ,ε := RN with

‖x‖2HN,δ,ε
:=

1

δ2
(x , y)2 +

1

ε2
‖(x − (x , y)y‖22 ,

where y = N−1/2(1, . . . , 1) ∈ RN . For instance for p = 2 this yields

an(HN,δ,ε ⊂ `N2 ) =

{
δ for n = 0,

ε for n > 0,

gn(HN,δ,ε ⊂ `N2 ) ≥ 1√
1

δ2
+

n

ε2N

.
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Overall idea for the proof (step 2)

Lemma

Let p ≥ 2. Furthermore, let (κM)M∈N and (λM)M∈N be convergent
series of real numbers with κ := limM→∞ κM > limM→∞ λM =: λ
If for every M ∈ N+ there are an N ∈ N+ and an embedding of a
Hilbert space HM ⊂ `Np , such that

an(HM ⊂ `Np ) ≤ 1

(M + n)κM
for all n ∈ {0, . . . ,N},

gn(HM ⊂ `Np ) ≥ 1

nλM
for some n ∈ {0, . . . ,N},

then there exists an embedding of a Hilbert space H ⊂ `p with

r(an(H ⊂ `p)) ≥ κ > λ ≥ r(gn(H ⊂ `p)) .
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Overall idea for the proof (step 3)

Choose the right parameters N, ε and δ as input for the lemma.
Get the result:

Theorem (Main result)

For p ∈ [1,∞) there exists an embedding H ⊂ `p with

r(an) = min

{
1

2
,

1

p

}
and r(gn) = 0 .

Open Question.

If r(an) > min

{
1

2
,

1

p

}
, does r(an) = r(gn) follow?
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Thank you!
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