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The Problem

The Problem

We want to approximate the embedding operator

AH = Ly(X),
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The Problem

The Problem

We want to approximate the embedding operator
A:H— Ly(X),

where

@ H is a Hilbert space of functions on an arbitrary measure
space X and

o 1< p<ox.
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The Problem

Linear algorithms are optimal

The optimal algorithms A, : H — L,(X) that use n linear
functionals or n function evaluations are linear.
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The Problem

Linear algorithms are optimal

The optimal algorithms A, : H — L,(X) that use n linear
functionals or n function evaluations are linear. That means

An(f) = Za;(f)h,-,

where h; € Ly(X)
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The Problem

Linear algorithms are optimal

The optimal algorithms A, : H — L,(X) that use n linear
functionals or n function evaluations are linear. That means

An(f) = Za;(f)h,-,

where h; € Ly(X) and

@ the «; : H — R are continuous linear functionals

R. Tandetzky General information versus function evaluations



The Problem

Linear algorithms are optimal

The optimal algorithms A, : H — L,(X) that use n linear
functionals or n function evaluations are linear. That means

An(F) = i(f)hi,
i=1
where h; € Ly(X) and

@ the «; : H — R are continuous linear functionals or

@ the o; : H — R are of the form «;(f) = f(x;) for some x; € X.
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The Problem

Measuring the error

Definition (Approximation numbers and sampling numbers)

For A: H— Ly(X), A(f) := f we define the approximation
numbers and sampling numbers as

n
an(H C Lp(X)) == inf sup ‘ f— Zai(f)h: )
o1,.,on€H" fecH — p
h,sn€Lp [|F]<1 =1
n
gn(H C Ly(X)) := Xl,_'iprnex sup ||f — Z f(xi)hil| -
biohnely | fly<t =1 g
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The Problem

Measuring the error

Definition (Approximation numbers and sampling numbers)

For A: H— Ly(X), A(f) := f we define the approximation
numbers and sampling numbers as

an(H C Lp(X)) == . i?yfeH’ fgg
15:-+,%n

hipho€Lp ||FllH<1 i=1 P
W(H C Ly(X)) := inf f— f(xi)hi|| -
&n( p(X)) o L, S ,z; (xi) ,

e hn€Lp |l <1

Hence a, < g,.
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The Problem

General information versus function evaluations

General information

@ Analytically easier to handle
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General information Function evaluations
@ Analytically easier to handle

@ Known for most spaces.
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General information versus function evaluations

General information Function evaluations
@ Analytically easier to handle @ Numerically more interesting
@ Known for most spaces. @ Practically easier to
implement
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The Problem

General information versus function evaluations

General information Function evaluations
@ Analytically easier to handle @ Numerically more interesting
@ Known for most spaces. @ Practically easier to
implement

@ Unknown for some spaces

R. Tandetzky General information versus function evaluations



The Problem

Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (c,) is defined as

r(cs) :==sup{f € R: lim c,n® =0}
n—oo
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The Problem

Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (c,) is defined as

r(cs) :==sup{f € R: lim c,n® =0}
n—oo

We get r(n=?(log n)®) = a for a > 0.

A\
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The Problem

Complexity of an approximation problem

Definition (Rate of convergence)

The rate of convergence of a null sequence (c,) is defined as

r(cs) :==sup{f € R: lim c,n® =0}
n—oo

We get r(n=?(log n)®) = a for a > 0.

A\

Hence r(an) > r(gn)-
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The Problem

The BIG question

s r(an) = r(gn)?
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What do we know?

What do we know?

Theorem (Positive results)

For p=2 and r(a,) > % we have

{gn) > —orion)

1
> mr(an) > Er(a,,).

(Kuo, Wasilkowski, Wozniakowski, 2008)
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What do we know?

What do we know?

Theorem (Positive results)

For p=2 and r(a,) > % we have

r(gn) > 2r(an)

1
> mr(an) > Er(a,,).

(Kuo, Wasilkowski, Wozniakowski, 2008)

Furthermore: For all known examples where p = 2 and r(a,) > %
we have

r(an) = r(gn)
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What do we know?

What do we know?

Theorem (Negative results)

There is a Hilbert space embedding H C £, with

1
r(an) = 5 and  r(gn)=0.

(Hinrichs, Novak, Vibiral, 2008)

R. Tandetzky General information versus function evaluations



Results

Results

Theorem (Main result)

For p € [1,00) there exists an embedding H C {, with

r(an):min{;,;} o i) =0
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Overall idea for the proof

Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional
examples: For N € N let Hy 5. := RN with

1 1
el = 55000 + S0 = (o018

where y = N=Y/2(1,...,1) € RV,
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Overall idea for the proof

Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional
examples: For N € N let Hy 5. := RN with

1 1
0B = 55000+ 0= ()3,
where y = N=1/2(1,...,1) € RN. For instance for p = 2 this yields

0 for n=0,

an(Hnse C Eév) - {6 forn>0
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Overall idea for the proof

Overall idea for the proof (step 1)

Get sufficiently bad sampling numbers for finite dimsional
examples: For N € N let Hy 5. := RN with

1 1
0B = 55000+ 0= ()3,
where y = N=%/2(1,...,1) € RV, For instance for p = 2 this yields

0 for n=0,
e forn>0,

an(HN,é,a - Eév) = {

gn(Hnse C 6)) >
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Overall idea for the proof

Overall idea for the proof (step 2)

Let p > 2. Furthermore, let (kpm)men and (Ay)men be convergent
series of real numbers with k == limpy_o kKpm > limp_oo A =1 A
If for every M € N there are an N € NT and an embedding of a
Hilbert space Hyy C ¢V, such that

1
o(H M<————— forall ., N},
3( MCZP)_(M—i—n)’{M orinE{O, ) }
1
N
g,,(HMCZP)ZnA—M for some n € {0,..., N},

then there exists an embedding of a Hilbert space H C £, with

r(an(H C £p)) > k> X > r(ga(H C £p)).
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Overall idea for the proof

Overall idea for the proof (step 3)

Choose the right parameters N, ¢ and § as input for the lemma.
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Overall idea for the proof

Overall idea for the proof (step 3)

Choose the right parameters N, ¢ and § as input for the lemma.
Get the result:

Theorem (Main result)

For p € [1,00) there exists an embedding H C ¢, with

r(an)—min{;,;} a ) =0,
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Overall idea for the proof

Overall idea for the proof (step 3)

Choose the right parameters N, ¢ and § as input for the lemma.
Get the result:

Theorem (Main result)

For p € [1,00) there exists an embedding H C ¢, with

r(an)—min{;,;} a ) =0,

11
If r(an) > min{z, p}' does r(ap) = r(gn) follow?

A\
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Overall idea for the proof

Thank you!

n versus function evaluations

ndetzky General informati
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