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There are computational problems with d = ∞ variables, e.g.,

path integrals

Such problems can be approximated by problems with finite d

and many existing results could be and are used.
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There are computational problems with d = ∞ variables, e.g.,

path integrals

Such problems can be approximated by problems with finite d

and many existing results could be and are used.

HOWEVER!
Many results are IRRELEVANT

especially negative results
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LIBERATION SO FAR

Initial attempts for Feynman–Kac–type of integrals in

W. and Woźniakowski 1996 and Plaskota, W., and Woźniakowski 2000

Recent approaches for integration:

Creutzing, Dereich, Müller-Gronbach, and Ritter 2009,

Gnewuch 10,

Hickernell, Müller-Gronbach, Niu, and Ritter 2010,

Hickernell and Wang 2001,

Kuo, Sloan, W., and Woźniakowski 2009a,

Niu and Hickernell 2010,

Niu and Hickernell, Müller-Gronbach, and Ritter 2010

HOWEVER: Special Spaces and No Sharp Bounds

TO BE PRESENTED: General Spaces and Sharp Bounds
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QUASI-RKHS F

Following Kuo, Sloan, W., and Woźniakowski 2009a

Let D ⊆ R and H be a reproducing kernel Hilbert space (RKHS) of

functions f :

f : D → R and f(x) = 〈f,K(·, x)〉H where K is the kernel

ASSUMPTION: K(a, a) = 0 for an anchor a ∈ D

EXAMPLE (Wiener kernel):

K(x, y) = min(x, y) with a = 0, where D = [0, 1] or D = [0,∞)
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∞-variate domain: D = D∞, x = [x1, x2, . . . ] ∈ D

∞-variate functions:

f(x) =
∑

u⊂N

fu(x),

where fu depends on variables in u, a finite subset of N:

fu ∈ Hu with kernel Ku(x,y) =
∏

j∈u

K(xj , yj)

SPACE F: completion with respect to inner-product:

〈f, g〉F =
∑

u

1

γu
· 〈fu, gu〉Hu

for f =
∑

u

fu g =
∑

u

gu
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For simplicity, we present results only for product weights:

γu =
∏

j∈u

γj

F is RKHS iff
∑

u

γu · sup
x∈D

(K(x, x))|u| < ∞

iff

∞
∑

j=1

γj < ∞ and sup
x∈D

K(x, x) < ∞

Otherwise,

function sampling Lx(f) = f(x) is

DISCONTINUOUS! for some x

For Wiener kernel and D = [0,∞), F is NOT RKHS.

It is only Quasi-RKHS
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HOWEVER:

Function sampling Lx(f) = f(x) is always continuous

if x has finitely many active variables

Active variables: xj is active if xj 6= a

Sampling points used by our algorithms: Given x and u,

(x; u) = [y1, y2, . . . ] with yj =







xj if j ∈ u,

a otherwise.

(x; u) has |u| active variables

For any finite u and any x ∈ D, L(x;u) is continuous,

‖L(x;u)‖
2 =

∑

v⊆u

γv ·Kv(x,x) < ∞.
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Integration Problem

Given probability density function ρ, approximate

I(f) =

∫

D

f(x) · ρ∞(x) dx

= lim
d→∞

∫

Dd

f(x1, . . . , xd,a)
d
∏

j=1

ρ(xj) d(x1, . . . , xd).

It is continuous iff

∞
∏

j=1

(1 + γj · C0) < ∞ with C0 =

∫

D

∫

D

K(x, y) · ρ(x) · ρ(y) dx dy,

Hence STANDING ASSUMPTION:

C0 < ∞ and

∞
∑

j=1

γj < ∞
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Algorithms: An(f) =
∑n

i=1 f(xi; ui) · ai

Errors:

e(An;F) := sup‖f‖F≤1 |I(f)−An(f)| if An deterministic

e(An;F) := sup‖f‖F≤1

√

E|I(f)−An(f)|2 if An randomized
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Algorithms: An(f) =
∑n

k=1 f(xi; ui) · ai

Errors:

e(An;F) := sup‖f‖F≤1 |I(f)−An(f)| if An deterministic

e(An;F) := sup‖f‖F≤1

√

E|I(f)−An(f)|2 if An randomized

Cost of sampling f(x; u): $(|u|), $ is a cost function:

$ : [0,∞) → [1,∞) is monotonic

For instance, cost of computing f(x1, a, x3, a, . . . ) equals $(2)

Cost of An: cost(An) :=
∑n

i=1 $(|ui|)
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ε-Complexity: the minimal cost among algorithms with errors ≤ ε:

comp(ε;F) := inf {cost(A) : e(A,F) ≤ ε}
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ε-Complexity: the minimal cost among algorithms with errors ≤ ε:

comp(ε;F) = inf {cost(A) : e(A,F) ≤ ε}

Polynomial Tractability: if there are C and p such that

comp(ε,F) ≤ C · ε−p for all ε ∈ (0, 1)

The smallest such p is the exponent of tractability:

pwor if only deterministic algorithms are allowed,

and pran in general

Weak Tractability: if limε→0 ε · ln(comp(ε;F)) = 0

i.e., complexity is NOT exponential in 1/ε
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One of Results: Using Smolyak’s Construction

Based on Plaskota and W. 2010, and using techniques from Kuo, Sloan, W.,

and Woźniakowski 2009a and W. and Woźniakowski 2010b

ASSUMPTION 1: γj ≤ c1 · j
−β for β > 1

ASSUMPTION 2: There are C1, p such that for every n = 0, 1, . . .

there is a quadrature Qn that uses n function samples and

e(Qn;H) ≤
C1

(n+ 1)1/p
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On the ASSUMPTION 2

From Hinrichs 2010:

ASSUMPTION 2 holds with p = 2 for any K and ρ

From Plaskota, W., and Zhao 2009: Assume
∫

D

√

K(x, x) · ρ(x) dx < ∞

Let λn be the eigenvalues of

W (f)(x) =

∫

D

f(y) ·
K(y, x)
√

K(y, y)
· ρ(y) dy

If λn = O
(

n−q
)

then p =
2

q + 1− δ

Always q ≥ 1 and hence p ≤
2

2− δ
∼ 1
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Let D = [0, 1], ρ ≡ 1

For Wiener kernel K(x, y) = min(x, y)

p =







2
3 for randomized algs.

1 for deterministic algs.

For r-folded Wiener kernel

K(x, y) =

∫ min(x,y)

0

(x− t)r−1 · (y − t)r−1

[(r − 1)!]2
dt

p =







2
2·r+1 for randomized algs.

1
r for deterministic algs.
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Given u 6= ∅ Smolyak’s construction Smolyak [64] yields cubatures

Qu,n such that

e(Qu,n;Hu) ≤
c2 · C

|u|
2

(n+ 1)1/p
·

[

1 +
ln(n+ 1)

|u| − 1

](|u|−1)·α

for all n = 0, 1, . . . and some α ≥ 0 (see W. and Woźniakowski 1995)

Qu,n are deterministic if Qn are
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Define

L(k; γ) :=
∞
∑

j=1

γk
j and Lk := −1 +

∞
∏

j=1

(1 + γk
j )

Due ASSUMPTION 1, L(k; γ), Lk < ∞ for all k > β−1

Hence, for any a < 1− 1/β

L1−a < ∞

Define

nu :=







0 if γa
u
· L1−a · c2 · C

|u|
2 ≤ ε2

⌈[

γa
u
· L1−a · c2 · C

|u|
2 · ε−2

]p⌉

otherwise

and

QCD
ε (f) := f(a) +

∑

u;nu≥1

Qnu,u(fu)
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Lemma 1: Let

d(ε) := max{|u| : nu ≥ 1}

be the largest number of active variables used by QCD
ε . Then

d(ε) ≤ c ·
ln(1/ε)

ln(ln(1/ε))
= o(ln(1/ε))

QCD
ε uses samples of fu. Due to Kuo, Sloan, W., and Woźniakowski 2009b

cost of sampling fu is bounded by 2|u| · $(|u|)

Hence

cost(QCD
ε ) ≤ $(0) + 2d(ε) · $(d(ε)) ·

∑

u;nu≥1

nu
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THM. 1 Let ASSUMPTIONS 1 and 2 hold.

If γn = O(n−β) with β > 1 then

e(QCD
ε ;F) = ε · (1 + o(1))

and

cost(QCD
ε ) ≤

cδ · $(d(ε))

εmax(p , 2/(β−1)+δ)
.

COROLLARY 1

Polynomial Tractability with tractability exponent

psett ≤ max

(

p ,
2

β − 1

)

even for $(d) = O
(

εk·d
)

Weak Tractability even for

$(d) = O
(

ee
k·d

)
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OPTIMALITY

Due to a lower bound from Kuo, Sloan, W., and Woźniakowski 2009a

THM. 2 (Worst Case Setting)

If γn = Θ
(

n−β
)

(β > 1) and the exponent 1/p in ASSUMPTION 2

is sharp, then

pwor = max

(

p ,
2

β − 1

)

for ALL $ such that

Ω(d+ 1) ≤ $(d) ≤ Θ
(

ek·d
)
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THM. 3 Let ASSUMPTIONS 1 and 2 hold.

If γn = O(rn) with r ∈ (0, 1) then (as before)

e(QCD
ε ;F) = ε · (1 + o(1)),

However now

d(ε) = O
(

√

ln(1/ε)
)

and therefore

cost(QCD
ε ) ≤

c · $(d(ε))

εexponent

where

exponent = p+
O(ln(ln(1/ε)))

√

ln(ε)
= p+ o(1)
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COROLLARY 2

Polynomial Tractability with tractability exponent

ptrct ≤ p even for $(d) = O
(

εk·d
r
)

with r < 2.

Weak Tractability even for

$(d) = O
(

ee
k·d

2
)

Clearly, if the exponent 1/p in ASSUMPTION 2 is sharp, then

pwor = p

for ALL $ such that Ω(d+ 1) ≤ $(d) ≤ Θ
(

ek·d
r)
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HAPPY BIRTHDAY STEFAN
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